
OPENMP BOF - ROADMAP

OPENMP ROADMAP
FOR ACCELERATORS
ACROSS
DOE PRE-EXASCALE
/EXASCALE MACHINES

erhtjhtyhy

February 4, 2020

MOTIVATION FOR THIS BOF
§ The current HPC environment is diverse and complex

– Variety of hardware and multiple vendors providing their own programming interfaces
and runtimes

§ Critical for application developers to consider portable (and even better
performance portable) solutions which can target different platforms across
vendors
– OpenMP is an open standard supported by nearly every vendor, and a promising

solution

§ Goals
– Present vendors’ roadmap for DoE pre-exascale/exascale systems
– Discuss performance and evaluation, interoperability, feature support and

implementation details, and community support
– Give advice to application developers about what works well in implementations (both

now and in the future)
2

PARTICIPANTS FROM IMPLEMENTORS

§ LLVM
– Johannes Doerfert (ANL)

§ AMD
– Greg Rodgers

§ Cray
– Luiz DeRose

§ IBM
– Wang Chen

§ Intel
– Xinmin Tian
– Carlos Rosales-Fernandez

§ NVIDIA/PGI
– Doug Miles
– Annemarie Southwell
– Stephen Scalpone

PARTICIPANTS FROM LABS/UNIVERSITIES

§ Argonne National Laboratory
– Kalyan Kumaran
– JaeHyuk Kwack
– Colleen Bertoni
– Johannes Doerfert
– Yasaman Ghadar
– Jose Monsalve Diaz
– Brian Homerding
– Tim Williams
– Raymond Loy
– Ye Luo
– Hal Finkel

§ Lawrence Berkeley National
Laboratory
– Christopher Daley
– Jack Deslippe
– Rahul Gayatri
– Thorsten Kurth
– Charlene Yang
– Brian Friesen
– Jay Srinivasan

PARTICIPANTS FROM LABS/UNIVERSITIES

§ Oak Ridge National Laboratory
– Oscar Hernandez
– Reuben Budiardja
– Bronson Messer
– Gustav Jansen
– Matthew Norman

§ Brookhaven National Laboratory
– Vivek Kale
– Barbara Chapman

§ Lawrence Livermore National
Laboratory
– Bronis de Supinski

§ Sandia National Laboratory
– Stephen Olivier

§ University of Tennessee - Knoxville
– Piotr Luszczek

OPENMP RESOURCES AND EVENTS AT ECP AM

§ OpenMP-related websites
– https://www.openmp.org
– https://crpl.cis.udel.edu/ompvvsollve/
– https://www.youtube.com/user/OpenMPARB/

§ OpenMP events at ECP Annual Meeting:
– Early Experience of Application Developers with OpenMP Offloading at ALCF,

NERSC, and OLCF
• Tue Feb 4, 2020, 4:00 PM - 5:30 PM in Legends Ballroom

– OpenMP 4.5 and 5.0 Tutorial (Offload)
• Wed Feb 5, 2020, 2:30 PM - 6:00 PM in Discovery A

6

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST)

LLVM/Clang 10 AMD (mostly
tracks LLVM) Cray (CCE 10) IBM (XL V16.1.6) Intel (Approximately

2021 timeframe)
NVIDIA/PGI (Early 2021
for a production release)

Levels of parallelism
2 (teams, parallel)
(11: 3 (teams, parallel,
simd))

2 (teams, parallel) 2 (teams,
parallel or simd) 2 (teams, parallel) 3 (teams, parallel, simd) 2 (teams, parallel)

OpenMP directive
target ✓ ✓ ✓ ✓ ✓ ✓
declare target ✓ ✓ ✓ ✓ ✓ ✓
map ✓ ✓ ✓ ✓ ✓ ✓
target data ✓ ✓ ✓ ✓ ✓ ✓
target enter/exit data ✓ ✓ ✓ ✓ ✓ ✓
target update ✓ ✓ ✓ ✓ ✓ ✓
teams ✓ ✓ ✓ ✓ ✓ ✓
distribute ✓ ✓ ✓ ✓ ✓ ✓
parallel ✓ ✓ ✓ (may be inactive) ✓ ✓ ✓
for/do ✓ ✓ ✓ ✓ ✓ ✓
reduction ✓ ✓ ✓ ✓ ✓ ✓
simd simdlen(1)

(11: honored with hint) ✓ (on host) ✓ ✓ (accepted and
ignored) ✓ ✓ simdlen(1)

atomic ✓ ✓ ✓ ✓ ✓ ✓
critical ✓ ✓ ✓ ✓ ✓ ✘
sections ✓ ✓ ✓ ✓ ✓ ✘
master ✓ ✓ ✓ ✓ ✓ ✓
single ✓ ✓ ✓ ✓ ✓ ✓
barrier ✓ ✓ ✓ ✓ ✓ ✓
declare variant ✓ ✓ (support planned

for CCE 11) ✘ ✓ ✓

Topics Minutes Presenter or Moderator
Introduction 5 JaeHyuk Kwack/ Colleen Bertoni
Roadmap Presentations Kalyan Kumaran (Moderator)

LLVM 5 Johannes Doerfert
AMD 5 Greg Rodgers
Cray 5 Luiz DeRose
IBM 5 Wang Chen
Intel 5 Xinmin Tian
NVIDIA/PGI 5 Doug Miles
GNU-related 5 Oscar Hernandez

Panel discussion
- Preselected questions
- Questions/comments from audience (alternating)

50 Kalyan Kumaran and other panelists

Total time 90

8

SCHEDULE AT THIS BOF

ROADMAP PRESENTATIONS

LLVM

OpenMP in LLVM

Johannes Doerfert (ANL) <jdoerfert@anl.gov>

The LLVM framework
● Community driven open source compiler framework
● Collection of “sub projects”:

○ LLVM-Core, Clang, libc++, OpenMP (runtimes), Flang (=F18), ...

● Basis of most vendor compilers
● Developed towards full language and vendor support

OpenMP in LLVM
● OpenMP enabled Frontends: Clang (C/C++), and Flang (Fortran)
● OpenMP host and (GPU) device runtimes
● OpenMP GPU offloading: NVIDIA (functional), AMD (actively developed), Intel (planned)

● OpenMP optimizations (NEW!)
● Mailing list openmp-dev@lists.llvm.org

● Bi-weekly meeting https://bluejeans.com/544112769

mailto:openmp-dev@lists.llvm.org
https://bluejeans.com/544112769
https://bluejeans.com/544112769

Status Tracking
https://clang.llvm.org/docs/OpenMPSupport.html

https://clang.llvm.org/docs/OpenMPSupport.html

Active Development

● OpenMP code generation in Flang (=F18)
○ OpenMP-IR-Builder*: reusable OpenMP code generation https://shorturl.at/tDJQR

● OpenMP optimizations
○ “scalar optimizations” (constant propagation, alias analysis, …) almost complete*
○ “parallelism-aware optimizations” (parallel region merging, ...) under review

● OpenMP offloading
○ AMD GPU support well underway
○ Proper function version selection, e.g, for math.h,cmath, under review
○ Enable “fast” SPMD-mode semantically, not syntactically

● OpenMP feature improvements
○ Proper “asynchronous” offloading
○ ...

* disabled in the default pipeline for now

https://shorturl.at/tDJQR
https://shorturl.at/tDJQR

OpenMP Testing Infrastructure

● LLVM-Test Suite needs OpenMP support (parallelism in tests) [started]

● LLVM-Test Suite support for the OpenMP V&V suite (ECP) [done]

● LLVM CI buildbots with OpenMP offloading support [planned]

● “Host” backend for the device runtime planned (sanitizer support!) [planned]

● Automatic test generation (=exhaustive & fuzzy testing) [planned]

We always appreciate help, e.g., time,
hardware, testing, …

Please contact me or the list!

AMD

ECP OpenMP BOF
AMD: Greg Rodgers

February 4, 2020

Programming

Models

Libraries

Tools and

Frameworks

Applications

Hardware

HPC and ML Applications

Low-level GPU and CPU Runtimes and Linux

OpenMP HIP OpenCL Python

BLAS,FFT,RNG,Sparse AOCL Eigen MIOpen

Debuggers Performance Tools
System Management

Software

HPC and ML

Frameworks

RCCL UCX, Libfabric MPICH OpenMPI

GPU CPU

ROCM Software Stack

[AMD Public Use]

LLVM and AMD▪ AMD supports ISA generation for CPUs and GPUs with LLVM backends.

▪ The LLVM backend for AMDGPUs is called “Lightning Compiler” (LC)
“LLVM User Guide for AMDGPU Backend”
https://llvm.org/docs/AMDGPUUsage.html)

contains description of AMDGPU LLVM Intermediate Representation

(IR) for LC

▪ Offloading Frontends: OpenMP(C, C++, FORTRAN), OpenCL, and HIP

⁃ Frontends driven by industry standards

⁃ Frontend language for GPU kernels is called HIP

⁃ Offloading LLVM frontends are multi-pass clang compilations;

host pass and device pass generate bundled objects

▪ AOMP supports OpenMP target offload to AMDGPUs

⁃ Available at https://github.com/ROCm-Developer-Tools/aomp

⁃ Uses LLVM plus ROCm software stack components

⁃ Integrates flang FORTRAN driver

Compile Toolchain
clang –c X.c <compile flags> -o X.o

Compiled object files contain both host
object code and device LLVM bitcode

X.c

Device Pass
(clang –cc1)

Host Pass
(clang –cc1)

Host Backend
(clang –cc1)

Bundle X.o

Link Toolchain
clang X.o Y.o <link flags> –o a.out

X.o UnBundle

Y.o

LLVM device
link and
optimize

UnBundle

AMDGPU LLVM
backend

(llc + lld)

Host
link
(ld)

a.out

Device Bitcode
Libraries

Host Object Link
Libraries

Future Device
Object Libraries

compiled host objects

elf compiled
bitcode

final
bitcodeSummary: AMD is active contributor to

LLVM frontends and backends

https://llvm.org/docs/AMDGPUUsage.html
https://github.com/ROCm-Developer-Tools/aomp

[AMD Public Use]

AOMP: AMD LLVM Compiler

▪ AOMP is a Clang/LLVM compiler with support for OpenMP on Radeon GPUs

▪ 2 Offloading methods in AOMP:
⁃ Target regions marked with OpenMP target pragmas create implicit GPU kernels
⁃ Use HIP host API to launch explicit GPU kernels. Can use HIP API within OpenMP CPU tasks to

manage multiple GPU devices. Explicit kernels are built with HIP or OpenCL

▪ Frontend languages: HIP, C++, c, with FORTRAN coming in 2020

▪ Current Release: 0.7-6 https://github.com/ROCm-Developer-Tools/aomp/
releases/tag/rel_0.7-6

⁃ Based off stable LLVM 9, supports OpenMP 4.5

⁃ Preliminary flang driver

⁃ Integrated with HIP-clang

⁃ Use AOMP github issues to report problems

⁃ All source including ROCm components are open source

⁃ Provides synchronous printf

▪ AOMP examples directory shows usage models including openmp, hip, hip+openmp

https://github.com/ROCm-Developer-Tools/aomp/releases/tag/rel_0.7-6

[AMD Public Use]

DISCLAIMER AND ATTRIBUTIONS
DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not
limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Radeon is the registered trademark of Advance Micro Devices, Inc. The OpenMP name and the OpenMP logo are registered
trademarks of the OpenMP Architecture Review Board. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. Other
product names used in this publication are for identification purposes only and may be trademarks of their respective companies. The dragon
image is owned by Apple Inc. All right, title and interest in the image, including the copyright therein, is retained by Apple. OpenCL is a trademark
of Apple Inc. used by permission by Khronos Group, Inc.

CRAY

•
•
•
•

IBM

IBM XL C/C++ & Fortran Compiler Overview

IBM XL Compilers / © 2020 IBM Corporation 1

Desired GPU programmer experience:
• Use OpenMP to enable GPU offloading
• Full access to CUDA libraries coming with NVIDIA CUDA Toolkit
• If necessary, allow further performance tuning with CUDA C/C++ and

CUDA Fortran

• OpenMP Compiler with GPU support:
• GA’ed subset since XL C/C++ V13.1.5 and XL Fortran V15.1.5 (Dec 2016)
• Fully supports OpenMP 4.5 in V16.1.1 (Nov 2018)

• CUDA C/C++: XL C/C+ as host compiler for NVCC
• CPU code can be compiled using XL C/C++ to fully leverage advanced

compiler optimization
• V16.1.1.3 supports NVCC 10.1

• CUDA Fortran Compiler:
• Introduced in XL Fortran V15.1.4 (June 2016)
• Recently refreshed in XL Fortran V16.1.1 (Nov 2018)

Current Releases:
• IBM XL C/C++ V16.1.1
• IBM XL Fortran V16.1.1

Language Standards and Specifications:
• C11
• C++11 and majority of C++14
• GCC extensions
• Fortran 2003 and majority of Fortran 2008
• OpenMP 4.5 for POWER CPU & NVIDIA GPU

OS Supported:
• RHEL 7.6, RHEL 8.1 (future)

CPU & GPU:
• IBM POWER8, POWER9 CPUs
• NVIDIA P100, V100 GPUs

CUDA Toolkit Pre-requisite:
• V10.1 (current)

• Creating multiple GPU blocks
• target transfer control of execution to one device thread per team
• every team initially execute the same code
• in a “#pragma omp distribute”, each team get its subset of iteration space

OpenMP Target Teams Combined Construct
host thread device

initial
threads

one team

IBM XL Compilers / © 2020 IBM Corporation

#pragma omp target teams
distribute parallel for
map(to: A, B) map(from: C)

{
int n = 64;
for(int i=0; i<n; i++) {

C[i] = A[i] * B[i];
}

}

copy* A, B

copy* C

2

0

50000

100000

150000

200000

FO
M

/s

LULESH
POWER8 + P100 GPUs

CPU
0

50000

100000

150000

200000

FO
M

/s

LULESH
POWER8 + P100 GPUs

GPU (synch) CPU
0

50000

100000

150000

200000

FO
M

/s

LULESH
POWER8 + P100 GPUs

GPU (asynch) GPU (synch) CPU

OpenMP Language Specification Evolution

IBM XL Compilers / © 2020 IBM Corporation

Sequential code:
for (i=0; i<N; i++)
y[i] = a*x[i] + y[i];

OpenMP 3.1 Parallel code:
#pragma omp parallel for
for (i=0; i<N; i++)
y[i] = a*x[i] + y[i];

OpenMP 4.0 Parallel code:
#pragma omp target teams distribute parallel for
for (i=0; i<N; i++)
y[i] = a*x[i] + y[i];

OpenMP 4.5 Parallel code:
#pragma omp target teams distribute parallel for nowait
for (i=0; i<N; i++)
y[i] = a*x[i] + y[i];

3

CORAL Application – LULESH
Better Performance With AC922

IBM XL Compilers / © 2020 IBM Corporation

Comparison of the application throughput
(Zones/Second Figure-of-Merit metric) on:

• 4 P100 GPUs, 8 ranks/node

• 4 V100 GPUs, 8 ranks/node

• 6 V100 GPUs, 24 ranks/node

Without modifying the application source code,
moving from 4 Pascal GPUs to 6 Volta GPUs gives
close to 2X performance improvement.

203k
278k

390k

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

FO
M

/s

LULESH
Problem size: 160^3

4 P100 4 V100 6 V100

40%

35%

2X

4

Why use OpenMP 4.5 ?

IBM XL Compilers / © 2020 IBM Corporation

Code comments effort No offloading With offloading comment

LULESH XLC,
BW limited

2-3 days FOM: 17,000 /
node

FOM: 196,000 / node 27 nodes

AMG2013 XLC, Read BW
limited, cuSparse

< week FOM: 0.7e+08 /
node

FOM: 9.4e+08 / node 1 node

HPCG** CLANG, Read BW
limited

3 weeks FOM: 15.8 FOM: 197 1 node

Opacity
library*

Table lookups,
integer arithmetic.

~3 weeks Speedup: 1x Up to 4x with data transfers
up to 30x with data in GPU

1 P8 vs. 1 P-
100

12x

13x

12x

Simulations on IBM Minsky nodes (2 POWER8 CPUs and 4 P-100 GPUs)
*Joint work with LLNL and IBM;
**Sequential Gauss-Seidel has been replaced with multi-colored Gauss-Seidel

5

Product Download &
Recommended Papers
Product Download:

XL C/C++: http://ibm.biz/xlcpp-linux
XL Fortran: http://ibm.biz/xlfortran-linux

Documentation:

XL C/C++: http://www-
01.ibm.com/support/docview.wss?uid=swg270366
75

XL Fortran: http://www-
01.ibm.com/support/docview.wss?uid=swg270366
72

IBM XL Compilers / © 2020 IBM Corporation

Hands on with OpenMP4.5 and Unified Memory:

Developing applications for IBM’s hybrid CPU +
GPU systems (Part I)

Leopold Grinberg (IBM) et al

https://link.springer.com/chapter/10.1007%2F9
78-3-319-65578-9_1

Hands on with OpenMP4.5 and Unified Memory:

Developing applications for IBM’s hybrid CPU +
GPU systems (Part II)

Leopold Grinberg (IBM) et al

https://link.springer.com/chapter/10.1007%2F9
78-3-319-65578-9_2

6

Need Further Information?

Contact Wang Chen, wdchen@ca.ibm.com

http://ibm.biz/xlcpp-linux
http://ibm.biz/xlfortran-linux
http://www-01.ibm.com/support/docview.wss%3Fuid=swg27036675
http://www-01.ibm.com/support/docview.wss%3Fuid=swg27036672
https://link.springer.com/chapter/10.1007/978-3-319-65578-9_1
https://link.springer.com/chapter/10.1007/978-3-319-65578-9_2
http://ca.ibm.com

Notices and disclaimers

IBM XL Compilers / © 2020 IBM Corporation

• © 2020 International Business Machines Corporation. No part of
this document may be reproduced or transmitted in any form without
written permission from IBM.

• U.S. Government Users Restricted Rights — use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM.

• Information in these presentations (including information relating to
products that have not yet been announced by IBM) has been
reviewed for accuracy as of the date of initial publication and could
include unintentional technical or typographical errors. IBM shall
have no responsibility to update this information. This document is
distributed “as is” without any warranty, either express or
implied. In no event, shall IBM be liable for any damage arising
from the use of this information, including but not limited to,
loss of data, business interruption, loss of profit or loss of
opportunity. IBM products and services are warranted per the
terms and conditions of the agreements under which they are
provided.

• IBM products are manufactured from new parts or new and used
parts.
In some cases, a product may not be new and may have been
previously installed. Regardless, our warranty terms apply.”

• Any statements regarding IBM's future direction, intent or
product plans are subject to change or withdrawal without
notice.

• Performance data contained herein was generally obtained in a
controlled, isolated environments. Customer examples are presented
as illustrations of how those

• customers have used IBM products and the results they may have
achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

• References in this document to IBM products, programs, or services
does not imply that IBM intends to make such products, programs or
services available in all countries in which IBM operates or does
business.

• Workshops, sessions and associated materials may have been
prepared by independent session speakers, and do not necessarily
reflect the views of IBM. All materials and discussions are provided for
informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual
participant or their specific situation.

• It is the customer’s responsibility to insure its own compliance
with legal requirements and to obtain advice of competent legal
counsel as to the identification and interpretation of any relevant laws
and regulatory requirements that may affect the customer’s business
and any actions the customer may need to take to comply with such
laws. IBM does not provide legal advice or represent or warrant that its
services or products will ensure that the customer follows any law.

7

Notices and disclaimers
continued

IBM XL Compilers / © 2020 IBM Corporation

• Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products about this publication and cannot
confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products. IBM does not warrant the
quality of any third-party products, or the ability of any such third-party products
to interoperate with IBM’s products. IBM expressly disclaims all warranties,
expressed or implied, including but not limited to, the implied warranties
of merchantability and fitness for a purpose.

• The provision of the information contained herein is not intended to, and does
not, grant any right or license under any IBM patents, copyrights, trademarks or
other intellectual property right.

• IBM, the IBM logo, ibm.com and [names of other referenced IBM
products and services used in the presentation] are trademarks
of International Business Machines Corporation, registered in
many jurisdictions worldwide. Other product and service names
might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at "Copyright and
trademark information" at: www.ibm.com/legal/copytrade.shtml.

• .

8

http://www.ibm.com/legal/copytrade.shtml

INTEL

Xinmin Tian
Intel Architecture, Graphics and Software – Intel Corporation

Intel® C/C++ and Fortran Compilers for CPUs
and Xe Accelerators

2020 Exascale Computing Project (ECP) Annual Meeting, February 4th, 2020, Houston, TX

| 2| 2

Roadmap and Executive Summary
� oneAPI HPC Toolkit Beta launched at SC’19, Nov’2019
� oneAPI HPC Toolkit Gold to be launch in Q4’2020
� oneAPI HPC Toolkit Gold updates in 2021
� Intel® OpenMP C/C++ and Fortran Compilers

� Delivers power and productivity for HPC application developments
� OpenMP helps to unlock users from a single type of devices
� Leverage C/C++ and Fortran standard and OpenMP standards to support multi-level

parallelism and heterogenous programming
� Open Issues:

� Community needs to reach a consensus what is the subset of OpenMP features to be
supported on devices.

� Community needs to reach a consensus what is the set of restrictions (EH, C/C++ and
Fortran I/O except printf?) in offloading region on devices

| 3| 3

Mapping from OpenMP to GPUs

� Multi-level parallelism is enabled via multiple OpenMP teams,
threads and SIMD lanes
• Permit use of GPU HW barrier across threads in a team
• Permit OpenMP thread semantics (wait, nowait, etc.)
• Allow synchronization across teams
• Use “Teams” to exploit the whole machine (more porting needed)
• Use OpenMP SIMD or compiler vectorization to exploit SIMD

OpenMP OpenCL DPC++/SYCL CUDA GPU Hardware # of Teams, Threads, SIMD lanes

Team Work-groups Workgroups Thread Blocks Thread Group # of Teams

Thread Work-items Work-items Worker Thread EU Thread # of Threads per Thread Group

SIMD Work-item Work-item Warp (SIMT
thread)

SIMD Lane (or
“Channel”)

SIMD1, SIMD2, SIMD4, SIMD8,
SIMD16, SIMD32

| 4| 4

OpenMP 4.5/5.0 Subset for Offloading
• Offload code to run on a target device

• omp target [clause[[,] clause],…]
• structured-block

• omp declare target
• [function-definitions-or-declarations]

• Map variables to a target device
• map ([map-type:] list) // map clause

• map-type := alloc | tofrom | to | from
• omp target [enter | exit] data [clause[[,]

clause],…]
• structured-block

• omp target update [clause[[,] clause],…]
• omp declare target

• [variable-definitions-or-declarations]

• Worksharing for acceleration
• omp teams/master/single [clause[[,] clause],…]
• omp distribute/do/for [clause[[,] clause],…]

• Parallel and simd code to run on GPU
• omp parallel [clause[[,] clause],…]
• omp simd
• A set of composite and combined constructs

[clause[[,] clause],…]
• E.g. #pragma omp target teams distribuite

parallel for simd
• Synchronization

• omp atomic [clause[[,] clause],…]
• map-type := alloc | tofrom | to | from

• omp critical [clause[[,] clause],…]
• structured-block

| 5| 5

OpenMP Runtime Support for Offloading
Runtime support routines on CPU Host

� EXTERN int omp_get_num_devices(void);
� EXTERN int omp_get_initial_device(void);
� EXTERN void *omp_target_alloc(size_t size, int device_num);
� EXTERN void omp_target_free(void *device_ptr, int device_num);
� EXTERN int omp_target_is_present(void *ptr, int device_num);
� EXTERN int omp_target_memcpy(void *dst, void *src, size_t length,

size_t dst_offset, size_t src_offset, int dst_device, int
src_device);

� EXTERN int omp_target_memcpy_rect(void *dst, void *src, size_t
element_size,
int num_dims, const size_t *volume, const size_t *dst_offsets,
const size_t *src_offsets, const size_t *dst_dimensions,
const size_t *src_dimensions, int dst_device, int src_device);

� EXTERN int omp_target_associate_ptr(void *host_ptr, void
*device_ptr, size_t size, size_t device_offset, int device_num);

� EXTERN int omp_target_disassociate_ptr(void *host_ptr, int
device_num);

� EXTERN int omp_is_initial_device(void);
� EXTERN int omp_get_initial_device(void);
� EXTERN void kmp_global_barrier_init(void); // Intel

externsion
� EXTERN void kmp_global_barrier(void); // Intel

externsion
� EXTERN void omp_set_default_device(int dev_num)
� EXTERN int omp_get_default_device(void)

Device Runtime Routines for GPU

� EXTERN int omp_get_team_num(void);
� EXTERN int omp_get_num_teams(void);
� EXTERN int omp_get_team_size(int);
� EXTERN int omp_get_thread_num(void);
� EXTERN int omp_get_num_threads(void);
� EXTERN int omp_in_parallel(void);
� EXTERN int omp_get_max_threads(void);
� EXTERN int omp_get_device_num(void);
� EXTERN int omp_get_num_devices(void);

| 6| 6

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Notices & Disclaimers
• This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.

• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com,
or from the OEM or retailer.

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

• INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

• Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries
in the U.S. and other countries.

NVIDIA/PGI

1

PGI OPENMP 4.5 FOR MULTICORE CPUS
Supported in PGI Fortran, C and C++ for x86-64, OpenPOWER, Arm

Skylake, Rome, P9, Arm

TARGET mapped to host CPU(s)

Loops parallelized across host cores

SIMD directive for vectorization hints

Known limitations: DECLARE SIMD ignored, no TASK DEPEND/PRIORITY,
no LINEAR/SCHEDULE/ORDERED(N) clauses on FOR/DO loop construct,
no DECLARE REDUCTION

2

SCALABILITY-CHALLENGED OPENMP FEATURES

Directives Locks Environment

MASTER
SINGLE
CRITICAL
ORDERED
SECTIONS
BARRIER

SIMD(SAFELEN)
TASK

TASKLOOP
TASKGROUP
DEPEND
TASKWAIT
CANCEL
PROCBIND

omp_init_lock()

omp_init_lock_with_hint()

omp_set_lock()

omp_test_lock()

omp_unset_lock()

omp_destroy_lock()

omp_init_nest_lock()

omp_init_nest_lock_with_hint()

omp_set_nest_lock()

omp_test_nest_lock()

omp_unset_nest_lock()

omp_destroy_nest_lock()

OMP_SCHEDULE
OMP_NUM_THREADS

OMP_DYNAMIC
OMP_PROC_BIND
OMP_PLACES
OMP_NESTED

OMP_WAIT_POLICY
OMP_MAX_ACTIVE_LEVELS

OMP_THREAD_LIMIT
OMP_CANCELLATION
OMP_DISPLAY_ENV

OMP_MAX_TASK_PRIORITY

3

PGI OPENMP FOR NERSC-9/PERLMUTTER

➢ Define a performance-oriented subset that is readily implementable and
encourages GPU programming in a style that is massively scalable

➢ Existing OpenMP codes can port to GPU-accelerated Perlmutter nodes with
reasonable effort and modifications

➢ OpenMP codes properly structured for GPUs compile and execute with
performance on par with or close to equivalent OpenACC

➢ Codes that are not well-structured for GPUs may perform poorly but should
perform correctly

Performance-oriented OpenMP for NVIDIA Tesla GPU-accelerated Nodes

4

PGI/NERSC OPENMP 5.0 KEY LIMITATIONS*

Effectively ignored on CPU and GPU
▪ memory management allocators/directives
▪ for/do order(concurrent), prescriptive simd
▪ declare simd
▪ nested parallelism
▪ OMPD / OMPT support is not included

Effectively ignored on GPU
▪ binding/affinity
▪ tasks (will be executed immediately)

Fortran/C/C++ target offload for Tesla GPUs | Beta mid-2020, Production 2021

* Failure to list a given feature does not necessarily mean it is supported

Compile-time error on CPU and GPU
▪ array sections with strides, array shaping,

iterator modifier
▪ conditional:lastprivate
▪ linear/ordered(n) on for/do, standalone ordered
▪ scan, taskloop, cancellation, declare mapper
▪ depend objects, depobj
▪ user-defined reductions
▪ requires reverse_offload, dynamic_allocators,

atomic_default_mem_order

Compile-time error on GPU
▪ workshare, lastprivate, threadprivate, critical,

flush, ordered, sections

5

GPU PORTING ADVICE FOR OPENMP PROGRAMMERS

Re-order loops or transpose arrays to enable SIMD/SIMT
accesses in outermost loops

Use collapse(N) directives on loops to increase parallelism

Replace critical sections with atomics

Remove all I/O statements, remove memory allocation

Don’t put large data structures on the stack

Use compiler feedback to identify and factor out unsupported
or non-scalable OpenMP constructs and API calls

Parallelism, Parallelism, Parallelism …

PGI OpenMP subset for GPUs is not a re-compile and run solution

GNU-RELATED

11

GNU Going Forward

• https://procurement.ornl.gov/rfp/6400016227/
– Solicitation No. 6400016227 : GNU Compiler Collection

“The primary purpose of this Statement of Work (SOW) is to bring the implementations of
OpenACC and OpenMP in the GCC compiler suite up to the latest versions of the
standards, and supporting the GPU-accelerators of interest to OLCF so that it becomes fully
capable with respect to the needs of OLCF users on OLCF and other platforms.”

“The expectation is that this work will be completed as quickly as reasonably possible, but
definitely prior to April 2022, in anticipation of the upcoming delivery of the new Frontier
system.“

• RFP Contact information: William Besancenez {Willy} besancenezwr@ornl.gov

https://procurement.ornl.gov/rfp/6400016227/
mailto:besancenezwr@ornl.gov

2

Status of GNU compilers on Summit

OpenACC OpenMP (offload)
GNU
9.1.0 PGI 19.5

GNU
9.1.0

XL
16.1.1-3

Benchmark
Reference
time Pass/Fail Time Benchmark

Reference
time Pass/Fail Time

ostencil 303.ostencil 145 12.1 503.postencil 109 10.2
olbm 304.olbm 455 36.3 504.polbm 122 19.9
omriq 314.omriq 956 35.5 514.pomriq 621 45.5
md 350.md 252 9.28 550.pmd 241 21.2
palm 351.palm 370 117 551.ppalm 544 203
ep 352.ep 530 45.8 552.pep 231 179
clvrleaf 353.clvrleaf 445 35.9 553.pclvrleaf 1145 55.5
cg 354.cg 408 31.2 554.pcg 333 72.8
seismic 355.seismic 370 26 555.pseismic 282 45.8
sp 356.sp 276 21.6 556.psp 818 29.3
csp 357.csp 270 19.5 557.pcsp 859 92.4
miniGhost 359.miniGhost 369 35.8 559.pmniGhost 397 41.5
ilbdc 360.ilbdc 367 27.3 560.pilbdc 653 30.5
swim 363.swim 230 34.2 563.pswim 159 28
bt 370.bt 223 9.37 570.pbt 780 75.7

Unofficial SPEC ACCEL 1.2 results – Academic use

PANEL DISCUSSION

THANKS!

