OPENMP BOF - ROADMAP

OPENMP ROADMAP
FOR ACCELERATORS

ACROSS
DOE PRE-EXASCALE
[EXASCALE MACHINES

. OAK RID
Nati nal Labor:

P ==~

AMDZ

tory

C PEINER

‘/—_-

February 4, 2020

MOTIVATION FOR THIS BOF

= The current HPC environment is diverse and complex
— Variety of hardware and multiple vendors providing their own programming interfaces
and runtimes

= Critical for application developers to consider portable (and even better
performance portable) solutions which can target different platforms across

vendors
— OpenMP is an open standard supported by nearly every vendor, and a promising
solution

» Goals
— Present vendors’ roadmap for DoE pre-exascale/exascale systems
— Discuss performance and evaluation, interoperability, feature support and
implementation details, and community support
— Give advice to application developers about what works well in implementations (both
now and in the future)

PARTICIPANTS FROM IMPLEMENTORS

= LLVM = [ntel
—Johannes Doerfert (ANL) — Xinmin Tian
— Carlos Rosales-Fernandez
= AMD
— Greg Rodgers = NVIDIA/PGI
— Doug Miles
= Cray — Annemarie Southwell

_ Luiz DeRose — Stephen Scalpone

= |IBM
—Wang Chen

..
(@ ENERGY 55 #OAK RIDGE - Argonne &
..................

PARTICIPANTS FROM LABS/UNIVERSITIES

= Argonne National Laboratory » | awrence Berkeley National
— Kalyan Kumaran Laboratory
— JaeHyuk Kwack — Christopher Daley
— Colleen Bertoni —Jack Deslippe
—Johannes Doerfert — Rahul Gayatri
— Yasaman Ghadar — Thorsten Kurth
— Jose Monsalve Diaz — Charlene Yang
— Brian Homerding — Brian Friesen
— Tim Williams —Jay Srinivasan
—Raymond Loy
—Ye Luo
— Hal Finkel

PARTICIPANTS FROM LABS/UNIVERSITIES

» Oak Ridge National Laboratory = Lawrence Livermore National
— Oscar Hernandez Laboratory
— Reuben Budiardja — Bronis de Supinski

— Bronson Messer
— Gustav Jansen

_ Matthew Norman » Sandia National Laboratory

— Stephen Olivier

» Brookhaven National Laboratory
—Vivek Kale = University of Tennessee - Knoxuville

— Barbara Chapman — Piotr Luszczek

OPENMP RESOURCES AND EVENTS AT ECP AM

= OpenMP-related websites
— https://www.openmp.org
— https://crpl.cis.udel.edu/ompvvsollve/
— https://www.youtube.com/user/OpenMPARB/

= OpenMP events at ECP Annual Meeting:
— Early Experience of Application Developers with OpenMP Offloading at ALCF,
NERSC, and OLCF
* Tue Feb 4, 2020, 4:.00 PM - 5:30 PM in Legends Ballroom

— OpenMP 4.5 and 5.0 Tutorial (Offload)
« Wed Feb 5, 2020, 2:30 PM - 6:00 PM in Discovery A

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST)

AMD (mostly
tracks LLVM)

Intel (Approximately NVIDIA/PGI (Early 2021

B B 2021 timeframe) for a production release)

Cray (CCE 10) IBM (XL V16.1.6)

2 (teams, parallel)

Levels of parallelism (11: 3 (teams, parallel, 2 (teams, parallel) T

- 2 (teams, parallel) 3 (teams, parallel, simd) 2 (teams, parallel)

OpenMP directive
target v
declare target v
map v
target data v
target enter/exitdata Vv
target update v
teams v
v
v
v
v

distribute
parallel (may be inactive)

for/do
reduction

T rrrrrrrrr

imdlen(1)
1: honored with hint)

v (accepted and

] simdlen(1)

simd (on host)

—_Wn
[E=

atomic
critical
sections
master
single
barrier

SN S N S o S o I R O N S N

T rrrrr T rrrrrririe
T rrrrrrrr rrrrrrrr
U ALAXRXA 4 A4 L ALAANAss

= EEEEER
x ALNANN Al

(support planned

declare variant for CCE 11)

SCHEDULE AT THIS BOF

Introduction JaeHyuk Kwack/ Colleen Bertonl

" Rosdma Presentations | Kaan Kumaran (loderato
w5 [ohamesDooren

Panel discussion
- Preselected questions 50 Kalyan Kumaran and other panelists

- Questions/comments from audience (alternating)

Toal tme B
(BENERGY tTsaiis sty 8 m % QAK RIDGE Argonne &
tional Laboratory 2 nationaL LasoraTorY

ROADMAP PRESENTATIONS

LLVM

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

OpenMP in LLVM

Johannes Doerfert (ANL) <jdoerfert@anl.gov>

The LLVM framework

® Community driven open source compiler framework

® Collection of “sub projects™.
o LLVM-Core, Clang, libct+, OpenMP (runtimes), Flang (=F18), ...

® Basis of most vendor compilers
® Developed towards full language and vendor support

OpenMP in LLVM

OpenMP enabled Frontends: Clang (C/C++), and Flang (Fortran)

OpenMP host and (GPU) device runtimes

OpenMP GPU offloading: NVIDIA (functional), AMD (actively developed), Intel (planned)
OpenMP optimizations (NEW!)

Mailing list openmp-devalists.llvm.org

Bi-weekly meeting https:/bluejeans.com/544112769

mailto:openmp-dev@lists.llvm.org
https://bluejeans.com/544112769
https://bluejeans.com/544112769

SIMD extension SIMD nontemporal done

device extension infer target functions from initializers worked on
device extension infer target variables from initializers worked on
M device extension OMP_TARGET_OFFLOAD environment variable done D50522
ta t u S r a C I n g device extension support full ‘defaultmap’ functionality done D69204
device extension device specific functions done
device extension clause: device_type done
https.//cla n q ”Vm O rq/d OCS/O pe n M PS u p po rt html device extension clause: in_red'uction worked on r308768
. . . o device extension omp_get_device_num() worked on D54342
device extension structure mapping of references unclaimed
device extension nested target declare done D51378
device extension implicitly map ‘this’ (this[:1]) done D55982
device extension allow access to the reference count worked on
(omp_target _is_present)
device extension requires directive (unified shared memory) done
device extension clause: unified_address, done D52625,052359

OpenMP 5.0 Implementation Details

unified_shared_memory

The following table provides a quick overview over various OpenMP 5.0 features and their implementation status. Please contact openmp-dev at ~ device extension clause: reverse_offload unclaimed parts D52780
lists.llvm.org for more information or if you want to help with the implementation. device extension clause: atomic_default_mem_order unclaimed parts D53513
device extension clause: dynamic_allocators unclaimed parts D53079
Category Feature Status Reviews device extension user-defined mappers worked on D56326,D58638,058523,058074,060972,D59474
loop extension support !'= in the canonical loop form done D54441 device extension mapping lambda expression FToT] D51107
loop extens!on #pragmé omp loop (directive) Woradlon device extension clause: use_device_addr for target data worked on
loop extension collapse imperfectly nested loop dond device extension map(replicate) or map(local) when requires worked on D55719,D55892
loop extension collapse non-rectangular nested loop done unified shared me
loop extension C++ range-base for loop done device extension teams construct on the host device worked on Clang part is done, r371553.
loop extension clause: if for SIMD directives done device extension support non-contiguous array sections for worked on
loop extension inclusive scan extension (matching C++17 unclaimed target update
PSTL) atomic extension hints for the atomic construct worked on D51233
memory memory allocators done r341687,r357929 base language C11 support unclaimed
mangagement base language C++11/14/17 support worked on
memory allocate directive and allocate clause done r355614,r335952 base language lambda support done
mangagement misc extension array shaping unclaimed
o Te
OMPD OMPD interfaces Hodipstesm htt ~com/Op race misc extension library shutdown (omp_pause_resource[_all]) unclaimed parts D55078
/LLVM-openmp/tree/ompd-tests = = =
. misc extension metadirectives worked on
OMPT OMPT interfaces mostly done
- misc extension conditional modifier for lastprivate clause worked on
thread affinity thread affinity extension done ; . " h
extension misc extension user-defined function variants worked on D67294, D64095
task extension taskloop reduction o] misc extensions pointer/reference to pointer based array unclaimed
reductions
task extension task affinity not upstream - - - -
misc extensions prevent new type definitions in clauses unclaimed
task extension clause: depend on the taskwait construct worked on
task extension depend objects and detachable tasks worked on . .
task extension mutexinoutset dependence-type for tasks done D53380,D57576 OpenMP 5.1 Implementatlon Details
task extension combined taskloop constructs dong The following table provides a quick overview over various OpenMP 5.1 features and their implementation status, as defined In the technici
task extension master taskloop done report 8 (TR8). Please contact openmp-dev at lists.llvm.org for more information or if you want to help with the implementation.
task extension parallel master taskloop done
task extension master taskloop simd done Category Feature Status Reviews
task extension parallel master taskloop simd done misc extension user—deﬁned function variants with #ifdef worked on D71179
SIMD extension atomic and simd constructs inside SIMD code done protection
loop extension Loop tiling transformation claimed

https://clang.llvm.org/docs/OpenMPSupport.html

Active Development

® OpenMP code generation in Flang (=F18)
o OpenMP-IR-Builder*: reusable OpenMP code generation https://shorturl.at/tDJQR

® OpenMP optimizations
o “scalar optimizations” (constant propagation, alias analysis, ...) almost complete*

o “parallelism-aware optimizations” (parallel region merging, ...) under review

® OpenMP offloading

o AMD GPU support well underway
o Proper function version selection, e.g, for math.h, cmath, under review
o Enable “fast” SPMD-mode semantically, not syntactically

® OpenMP feature improvements

o Proper “asynchronous” offloading
O

* disabled in the default pipeline for now
B

https://shorturl.at/tDJQR
https://shorturl.at/tDJQR

OpenMP Testing Infrastructure

LLVM-Test Suite needs OpenMP support (parallelism in tests) [started]
LLVM-Test Suite support for the OpenMP V&YV suite (ECP) [done]
LLVM ClI buildbots with OpenMP offloading support [planned|
“Host” backend for the device runtime planned (sanitizer support!) [BlERRed]

Automatic test generation (=exhaustive & fuzzy testing) [planned]

We always appreciate help, e.g., time,
hardware, testing, ...

Please contact me or the list!

OpenMP 5.0/5.1 Features

Feature list (right) is available at https: //clang.11lvm.org/docs/OpenMPSupport . html.
Currently integrating various 5.0/5.1 features and improvements including:

* loop

* tile

* declare variant

* declare mapper

* target nowait

* metadirective

= proper math function support on GPUs

Main open problem is the interaction of static linking and GPU offloading code.
Contributors include IBM, Intel, BNL, ANL, and others.

GPU Offloading Support

Native math functions and intrinsics, e.g., CUDA shuffle, are available in target regions.

NVIDIA Devices
functional, several performance issues identified (see the TRegion section)

AMD Devices

actively worked on, device runtime almost complete, code generation is part of the
OpenMP-IR-Builder development

Intel Devices
in the planning stage

Contributors include AMD, ANL, and others.

OpenMP in Fortran

OpenMP in LLVM

Johannes Doerfert <jdoerfert@anl.gov>
Argonne National Lab

©OpenMP 5.0 Implementation Details

The following table 50 at
"
Feature Status. Reviews
support 1= In the canonical 1oop form done Dsasa1
#pragma om loop (directive) worked on
pse imperfectly nested loop done
colapse non-rectanguiar nested loop. done
Co-+ range-base for loop done
clause: if for SIMD drectives done
Inclusive scan extension (matching C+-+17 Unclaimed
psT)
v memry allocators done 1341667137929
mangagement
memory allocate directive and alocate clause. done 1355614.1335952
mangagement
omep OMPD interfaces. fotupstiesm hitpsugithub.com/OpenMPToolsinterface
JLLVM-openmptree/ompa-tests.
omeT OMPT intertaces ‘mostly done
thread affinity thread affinky extension done
exter
task extension taskioop reduction done
task extension task aftty not upstream
task extension Clause: depend on the taskwolt construct worked on
task extension depend objects and detachable tasks worked on
task extension done
task extension ‘combined taskloop constructs done
task extension master taskioop done
task extension paraliel master taskioop. done
task extension master taskloop simd done
task extension parallel moster taskloop simd. done
atomic and done
SIMD extension _ SIMD nontemporal done
worked on
Infer target worked on
OMP_TARGET done 050522
device extension support ful ‘defaultmap’ functionaiity done 69204
device specic functions. done
clause: device_type done
clause: in_reduction worked on 308768
omp_get_device_num() worked on 54342
structuro mapping of references unclaimed
nested target declare done 51378
Impiictly map this enis(:1)) done 055982

allow access to the reference count worked on
(omp_target is_present)

device extension clause: unified_address, done 052625052359

device extension unclaimedparts 052780
unclaimed parts 053513
unclaimedparts 053079

The Fortran frontend will be Flang (aka F18). Work in progress with various moving
parts. In the current design, Flang lowers Fortran to MLIR dialects. From there the
OpenMP-IR-Builder will generate LLVM-IR.

Flang
OpenMP parsing and some semantic analysis implemented

OpenMP MLIR dialect
OpenMP dialect started, very early stages

Code Generation
OpenMP code generation via the OpenMP-IR-Builder

Contributors include NVIDIA, ARM, LANL, ORNL, ANL, and others.

worked on 1D56326,058638,058523,058074,060972.059474
done os1107
clause: use_device_adr fo target data worked on
map(roplicate) or mapilocal) when requires worked on 055719,055892
unified_shared_me
worked on Clang part s done, 1371553,
device extension support non-contiguous array sections for _ worked on
target updats
atomic extension ints for the atomic construct worked on 51233
base language 11 support unciaimed
base language Co+1114n7 support worked on
base language tambda support done
misc extension amay shaping

unclaimed
Ubrary shutdown (omp_pause resourcel_aill) _Unclaimed parts 055078
metadrectives

‘conditional modife for astprivate clause worked on

misc extension user defined function variants werked on 067294, D64095
misc extensions pointer/reference to pointer bosed amay unclaimed
reductions
unclaimed

OpenMP 5.1 Implementation Details

The following table provides a quick overview ovar various OpenMP 5.1 features and thoir Implementation status, as defined i the technical

roport 8 (TR), #you want
ry Feature Status. Reviews
misc oxtension user-dofined function variants with #ifdel worked on o1
protection
100p extension Loop tiing transformation claimed

-

=)

EXASCALE COMPUTING PROJECT

Scalar Op For Parallel Pi

g

Enable existing scalar optimizations, e.g., constant propagation, to deal with (OpenMP)
parallel programs [1]. Mostly merged into LLVM as part of the Attributor framework [2].

/5rad_v2 2048 2048 0127 01271 0,520

e wm am wm am wm | um

‘aa oaom
—— —

2]

H

i oo

FRA
150

bases basep atirs e o agpp wans
versions

op Opt: Paralleli A Optimizations

The OpenMPOpt pass augments existing “scalar’ optimizations with an OpenMP (par-
allelism) aware, one. OpenMP runtime call deduplication, parallel region merging [1]
(below), and more are under review. #pragma omp parallel

#pragma omp for

for (int j = 0; j < M; j++)
work_0(3);

#pragma omp for

for (int j = @; j < M; j++)
work_1(3);

#pragma omp parallel for
for (int j = @; j < M; j++)
work_0(3);
#pragma omp parallel for
for (int j = @; j < M; j++)
work_1(3);
}

TRegions

GPU architecture agnostic interface that allows static program optimization. In the
simplest case the left is normalized to the right resulting in up to 1.55x speedup [3].
#pragma omp target
for(int i = @; i < Nj i++)
#pragma omp parallel for
for (int j = @; j < M; j++)
work(i, 3);

#pragma omp target parallel
for(int i = 0; i < N; i++)
#pragma omp for
for (int j = 0; j < M; j++)
work(i, j);

ts & Ref

This poster shows the status of work done by various people across different Depart-
ment of Energy organizations, academia, and industry.

Johannes Doerfert was supported by the Exascale Computing Project (17-5C-20-5C). a collaborative effort of two US.
Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for
the planning and preparation of capable exascale ecosystem, including software, applications, hardware, advanced system
engineering, and early testbed platforms, in support of the nation's exascale computing imperative.

[1] Johannes Doerfert and Hal Finkel. Compiler Optimizations For OpenMP.
In Intemational Workshop on OpenMP. Springer, 2018,

2] 3. Doerfert, H. Ueno, and S. Stipanovic: The Attributor: A Versatile Inter-procedural Fixpoint lteration Framework.
LLVM Developer Meeting 2019, https: //www. youtube . com/watch?v=HYWCSSLi Tw, 2019

3] J. Doerfert, J. M. Diaz and H. Finkel. The TRegion Interface and Compiler Optimizations for OpenMP Target Regions.
I International Workshop on OpenMP. Springer, 2019.

AMD

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

AMD 1

ECP OpenMP BOF

AMD: Greg Rodgers
February 4, 2020

ROCM Software Stack

Applications HPC and ML Applications

Tools and Debuggers Performance Tools System Management HPC and ML
Frameworks Software Frameworks

BLAS,FFT,RNG,Sparse AOCL Eigen MIOpen
Libraries]

RCCL

Programming { OpenMP

UCX, Libfabric MPICH OpenMPI

OpenCL Python
Models P y

Low-level GPU and CPU Runtimes and Linux

Hardware CPU

[AMD Public Use]

= AMD supports ISA generation for CPUs and GPUs with LLVM backends.
"= The LLVM backend for AMDGPUs is called “Lightning Compiler” (LC)

“LLVM User Guide for AMDGPU Backend”

https://llvm.org/docs/AMDGPUUsage.html)

contains description of AMDGPU LLVM Intermediate Representation

(IR) for LC

= Offloading Frontends: OpenMP(C, C++, FORTRAN), OpenCL, and HIP

= Frontends driven by industry standards

= Frontend language for GPU kernels is called HIP

= Offloading LLVM frontends are multi-pass clang compilations;
host pass and device pass generate bundled objects

= AOMP supports OpenMP target offload to AMDGPUs

= Available at https://github.com/ROCm-Developer-Tools/aomp
= Uses LLVM plus ROCm software stack components

= Integrates flang FORTRAN driver

Summary: AMD is active contributor to
LLVM frontends and backends

LLVM and AMD

Host Pass
—>

(clang -ccl)

Host Backend
(clang -ccl)

—

— v

Device Pass
>

(clang -ccl)

Bundle

-

A

Compile Toolchain

clang -c X.c <compile flags> -o X.o

Compiled object files contain both host
object code and device LLVM bitcode

Link Toolchain

clang X.o Y.o <link flags> -0 a.out

UnBundle

-

compiled host objects l

compiled

bitcode

LLVM device

link and
optimize

na

Nig

UnBundle
Device Bitcode
Libraries

final AMDGPU LLVM | elf

backend ——
bitcod® (11lc + 11d)

Host
link
(1d)

Future Device Host Object Link
Object Libraries Libraries

AMDA

https://llvm.org/docs/AMDGPUUsage.html
https://github.com/ROCm-Developer-Tools/aomp

[AMD Public Use]

AOMP: AMD LLVM Compiler

= AOMP is a Clang/LLVM compiler with support for OpenMP on Radeon GPUs
= 2 Offloading methods in AOMP:

= Target regions marked with OpenMP target pragmas create implicit GPU kernels
= Use HIP host API to launch explicit GPU kernels. Can use HIP APl within OpenMP CPU tasks to
manage multiple GPU devices. Explicit kernels are built with HIP or OpenCL

" Frontend languages: HIP, C++, ¢, with FORTRAN coming in 2020

= Current Release: 0.7-6 https://github.com/ROCm-Developer-Tools/aomp/
releases/tag/rel 0.7-6

Based off stable LLVM 9, supports OpenMP 4.5
Preliminary flang driver

Integrated with HIP-clang

Use AOMP github issues to report problems

All source including ROCm components are open source
Provides synchronous printf

= AOMP examples directory shows usage models including openmp, hip, hip+openmp

AMDA

https://github.com/ROCm-Developer-Tools/aomp/releases/tag/rel_0.7-6

[AMD Public Use]

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not
limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof
without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

©2020 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced
Micro Devices, Inc. Radeon is the registered trademark of Advance Micro Devices, Inc. The OpenMP name and the OpenMP logo are registered
trademarks of the OpenMP Architecture Review Board. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. Other
product names used in this publication are for identification purposes only and may be trademarks of their respective companies. The dragon

image is owned by Apple Inc. All right, title and interest in the image, including the copyright therein, is retained by Apple. OpenCL is a trademark
of Apple Inc. used by permission by Khronos Group, Inc.

AMDA

CRAY

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

Hewlett Packard
Enterprise

Cray CCE OpenMP Update

| uiz DeRose
Distinguished Technologist
Programming Environment Director

February 4, 2020

FORWARD LOOKING STATEMENTS

This presentation may contain forward-looking statements that involve risks,
uncertainties and assumptions. If the risks or uncertainties ever materialize or
the assumptions prove incorrect, the results of Hewlett Packard Enterprise
Company and its consolidated subsidiaries ("Hewlett Packard Enterprise”) may
differ materially from those expressed or implied by such forward-looking
statements and assumptions. All statfements other than statements of historical
fact are statements that could be deemed forward-looking statements,
including but not limited to any statements regarding the expected benefits and
costs of the transaction contfemplated by this presentation; the expected timing
of the completion of the transaction; the ability of HPE, its subsidiaries and Cray
to complete the transaction considering the various conditions to the
fransaction, some of which are outside the parties’ control, including those
conditions related to regulatory approvals; projections of revenue, margins,
expenses, net earnings, net earnings per share, cash flows, or other financial
items; any statements concerning the expected development, performance,
market share or competitive performance relating to products or services; any
statements regarding current or future macroeconomic trends or events and
the impact of those trends and events on Hewlett Packard Enterprise and its
financial performance; any statements of expectation or belief; and any
statements of assumptions underlying any of the foregoing. Risks, uncertainties
and assumptions include the possibility that expected benefits of the
fransaction described in this presentation may not materialize as expected; that
the fransaction may not be timely completed, if at all; that, prior to the
completion of the transaction, Cray’s business may not perform as expected due
fo fransaction-related uncertainty or other factors; that the parties are unable to
successfully implement integration strategies; the need to address the many
challenges facing Hewlett Packard Enterprise's businesses; the competitive
pressures faced by Hewlett Packard Enterprise's businesses; risks associated
with executing Hewlett Packard Enterprise's strategy; the impact of
macroeconomic and geopolitical tfrends and events; the development and
fransition of new products and services and the enhancement of existing
products and services to meet customer needs and respond to emerging
technological trends; and other risks that are described in our Fiscal Year 2018
Annual Report on Form 10-K, and that are otherwise described or updated from
fime to fime in Hewlett Packard Enterprise's other filings with the Securities and
Exchange Commission, including but not limited to our subsequent Quarterly
Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation and
does not intend o update these forward-looking statements.

—

THE CRAY COMPILING ENVIRONMENT (CCE)

e Cray tfechnology designed for real scienfific applications, not just for benchmarks

« Arguably the most complete vectorization capabilities in the industry
— Full automatic loop vectorization with automatic outer loop vectorization

—no need for directives and source code modification
« Aufomatic opfimizations deliver performance for a new target through a simple recompile
« Compiler optimization feedback for users with annotated listing of source code

o Customized for our users

e Fully integrated heterogeneous optimization capability

e Fully Integrated and optimized PGAS

e Support multiple platforms

C++17

« X86 (Intel or AMD)
o« ARM (ThunderX2; NSP-1 under development)
e GPUs (NVIDIA; AMD under development)

—

Fortran 2008

Cl11

OpenMP 4.5

UPC 1.3

Fortran Source

__

CCE-Classic
C/C++ FE (EDG)

C and C++ Source

- - <

< p CCE-Clang

C/C++ FE (CLANG)

T~

\ 4

A 4

Aarch64 CG
(LLVM)

LT S e e

~

3 party with Cray
value added

—

Object Files

Full OpenMP 4.5 for CPUs and NVIDIA GPUs

CCE-CLANG OPENMP STRATEGY

e Full OpenMP 4.5 support (CPU and GPU)
« NVIDIA GPUs support today
o AMD GPUs support under development

e Use CCE OpenMP runtime libraries
« Offers interoperability with CCE Fortran (and Classic C/C++)
 Provides a lightweight, HPC-optimized runtime
« Requires a thin “adapter” layer in Cray’s runtime

e Implement Cray-optimized Clang code generation for offload regions
« Mimics the CCE Classic implementation
« Offers performance advantage over upstream Clang

—

THANK YOU

Luiz DeRose
l[dr@hpe.com

IBM

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

IBM XL C/C++ & Fortran Compiler Overview

Current Releases:

IBM XL C/C++V16.1.1
IBM XL Fortran V16.1.1

Language Standards and Specifications:

Cl1l
C++11 and majority of C++14

GCC extensions
Fortran 2003 and majority of Fortran 2008

OpenMP 4.5 for POWER CPU & NVIDIA GPU

OS Supported:

RHEL 7.6, RHEL 8.1 (future)

CPU & GPU:

IBM POWERS8, POWER9 CPUs
NVIDIA P100, V100 GPUs

CUDA Toolkit Pre-requisite:

V10.1 (current)

IBM XL Compilers / © 2020 IBM Corporation

Desired GPU programmer experience:

« Use OpenMP to enable GPU offloading
« Full access to CUDA libraries coming with NVIDIA CUDA Toolkit

« If necessary, allow further performance tuning with CUDA C/C++ and
CUDA Fortran

- OpenMP Compiler with GPU support:

e GA’ed subset since XL C/C++ V13.1.5 and XL Fortran V15.1.5 (Dec 2016)
* Fully supports OpenMP 4.5 in V16.1.1 (Nov 2018)

« CUDA C/C++: XL C/C+ as host compiler for NVCC

« CPU code can be compiled using XL C/C++ to fully leverage advanced
compiler optimization

 V16.1.1.3 supports NVCC 10.1

- CUDA Fortran Compiler:
« Introduced in XL Fortran V15.1.4 (June 2016)
« Recently refreshed in XL Fortran V16.1.1 (Nov 2018)

OpenMP Target Teams Combined Construct

#pragma omp target teams
distribute parallel for
map(to: A, B) map(from: C)

¢ 1nt n = 64;
for(int 1=0; 1<n; 1++) {
C[i] = A[1] * B[1];
Iy

® Creating multiple GPU blocks

host thread |
device
initial
$ copy* A, B threads
ﬂ/\\\
o= < N T)
\ 4 \ 4
[VVVV \ 4 \ 4 A 4 YVVYVVY
\\/ J o\ V _ Y ,
l | ‘\
f copy” C one team

® target transfer control of execution to one device thread per team

® every team initially execute the same code

®ina “#pragma omp distribute”, each team get its subset of iteration space

IBM XL Compilers / © 2020 IBM Corporation

OpenMP Language Specification Evolution

OpenMP 4.5 Parallel code: LULESH
A #ipragma omp target teams distribute parallel for nowait POWERS8 + P100 GPUs
for (1=0; 1<N; 1++)
y[i] = a*x[1] + y[1]; 200000 |

OpenMP 4.0 Parallel code:

#pragma omp target teams distribute parallel for 150000 |
for (1=0; i<N; i++)
y[i] = a*x[i] + y[il;

0p)
>
100000 F
OpenMP 3.1 Parallel code: 7
#pragma omp parallel for
for (1=0; 1<N; 1++)
y[i] = a*x[1] + y[1]; 50000 |-

Sequential code:
for (1=0; 1<N; 1++)
y[i] = a*x[1] + y[i];

O L
B GPU (asynch) m GPU (synch) = CPU

IBM XL Compilers / © 2020 IBM Corporation

CORAL Application — LULESH
Better Performance With AC922

LULESH
Problem size: 16073

450000 Comparison of the application throughput

400000 (Zones/Second Figure-of-Merit metric) on:

350000

- 4P100 GPUs, 8 ranks/node

300000

- 4V100 GPUs, 8 ranks/node

£ 250000

>

E 200000

« 6V100 GPUs, 24 ranks/node

150000 Without modifying the application source code,

moving from 4 Pascal GPUs to 6 Volta GPUs gives
close to 2X performance improvement.

100000

50000

0

m4P100 m4V100 m6V100

IBM XL Compilers / © 2020 IBM Corporation

Why use OpenMP 4.5 ?

LULESH XLC, 2-3 days FOM: 17,000/ FOM: 196,000 / node 27 nodes
BW limited node

AMG2013 | XLC, Read BW < week FOM: 0.7e+08 / FOM: 9.4e+08 / node @ 1 node
limited, cuSparse node

HPCG** CLANG, Read BW |3 weeks |FOM:15.8 FOM: 197 @ 1 node
limited

Opacity Table lookups, ~3 weeks | Speedup: 1x Up to 4x with data transfers |1 P8 vs. 1 P-

library™ iInteger arithmetic. up to 30x with data in GPU | 100

IBM XL Compilers / © 2020 IBM Corporation

Simulations on IBM Minsky nodes (2 POWER8 CPUs and 4 P-100 GPUs)
*Joint work with LLNL and IBM;
**Sequential Gauss-Seidel has been replaced with multi-colored Gauss-Seidel

Product Download &
Recommended Papers

Product Download:

XL C/C++: http://ibm.biz/xlcpp-linux
XL Fortran: http://ibm.biz/xlfortran-linux

Documentation:

XL C/C++: http://www-
0d.ibm.com/support/docview.wss?uid=swg270366

Hands on with OpenMP4.5 and Unified Memory:

Developing applications for IBM’s hybrid CPU +
GPU systems (Part I)

Leopold Grinberg (IBM) et al
https://link.springer.com/chapter/10.1007%2F9

78-3-319-65578-9 1

75

XL Fortran: http://www-
0d.ibm.com/support/docview.wss?uid=swg270366

Hands on with OpenMP4.5 and Unified Memory:

Developing applications for IBM’s hybrid CPU +
GPU systems (Part II)

Leopold Grinberg (IBM) et al
https://link.springer.com/chapter/10.1007%2F9

72

78-3-319-65578-9 2

Need Further Information?

Contact Wang Chen, wdchen@ca.lbm.com

IBM XL Compilers / © 2020 IBM Corporation

http://ibm.biz/xlcpp-linux
http://ibm.biz/xlfortran-linux
http://www-01.ibm.com/support/docview.wss%3Fuid=swg27036675
http://www-01.ibm.com/support/docview.wss%3Fuid=swg27036672
https://link.springer.com/chapter/10.1007/978-3-319-65578-9_1
https://link.springer.com/chapter/10.1007/978-3-319-65578-9_2
http://ca.ibm.com

Notices and disclaimers

« © 2020 International Business Machines Corporation. No part of
this document may be reproduced or transmitted in any form without
written permission from IBM.

« U.S. Government Users Restricted Rights — use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM.

* Information in these presentations (including information relating to
products that have not yet been announced by IBM) has been
reviewed for accuracy as of the date of initial publication and could
include unintentional technical or typographical errors. IBM shall
have no responsibility to update this information. This document is
distributed “as is” without any warranty, either express or
implied. In no event, shall IBM be liable for any damage arising
from the use of this information, including but not limited to,
loss of data, business interruption, loss of profit or loss of
opportunity. IBM products and services are warranted per the
terms and conditions of the agreements under which they are
provided.

 IBM products are manufactured from new parts or new and used
parts.
In some cases, a product may not be new and may have been
previously installed. Regardless, our warranty terms apply.”

* Any statements regarding IBM's future direction, intent or

product plans are subject to change or withdrawal without
notice.

IBM XL Compilers / © 2020 IBM Corporation

Performance data contained herein was generally obtained in a
controlled, isolated environments. Customer examples are presented
as illustrations of how those

customers have used IBM products and the results they may have
achieved. Actual performance, cost, savings or other results in other
operating environments may vary.

References in this document to IBM products, programs, or services
does not imply that IBM intends to make such products, programs or
services available in all countries in which IBM operates or does
business.

Workshops, sessions and associated materials may have been
prepared by independent session speakers, and do not necessarily
reflect the views of IBM. All materials and discussions are provided for
informational purposes only, and are neither intended to, nor shall
constitute legal or other guidance or advice to any individual
participant or their specific situation.

It is the customer’s responsibility to insure its own compliance

with legal requirements and to obtain advice of competent legal
counsel as to the identification and interpretation of any relevant laws
and regulatory requirements that may affect the customer’s business
and any actions the customer may need to take to comply with such
laws. IBM does not provide legal advice or represent or warrant that its
services or products will ensure that the customer follows any law.

Notices and disclaimers
continued

* Information concerning non-IBM products was obtained from the suppliers of * IBM, the IBM logo, ibm.com and [names of other referenced IBM
those products, their published announcements or other publicly available products and services used in the presentation] are trademarks
sources. IBM has not tested those products about this publication and cannot of International Business Machines Corporation, registered in
confirm the accuracy of performance, compatibility or any other claims related many jurisdictions worldwide. Other product and service names
to non-IBM products. Questions on the capabilities of non-IBM products should might be trademarks of IBM or other companies. A current list of
be addressed to the suppliers of those products. IBM does not warrant the IBM trademarks is available on the Web at "Copyright and
quality of any third-party products, or the ability of any such third-party products trademark information" at: www.ibm.com/legal/copytrade.shiml.

to interoperate with IBM’s products. IBM expressly disclaims all warranties,
expressed or implied, including but not limited to, the implied warranties
of merchantability and fithess for a purpose.

» The provision of the information contained herein is not intended to, and does
not, grant any right or license under any IBM patents, copyrights, trademarks or
other intellectual property right.

IBM XL Compilers / © 2020 IBM Corporation

http://www.ibm.com/legal/copytrade.shtml

INTEL

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

Intel® C/C++ and Fortran Compilers for CPUs
and X= Accelerators

Xinmin Tian
Intel Architecture, Graphics and Software — Intel Corporation

2020 Exascale Computing Project (ECP) Annual Meeting, February 4th, 2020, Houston, TX

Roadmap and Executive Summary

oneAP|I HPC Toolkit Beta launched at SC'19, Nov'2019
oneAP| HPC Toolkit Gold to be launch in Q4’2020
oneAPI HPC Toolkit Gold updates in 2021

Intel® OpenMP C/C++ and Fortran Compilers
Delivers power and productivity for HPC application developments
OpenMP helps to unlock users from a single type of devices

Leverage C/C++ and Fortran standard and OpenMP standards to support multi-level
parallelism and heterogenous programming

Open Issues:

Community needs to reach a consensus what is the subset of OpenMP features to be
supported on devices.

Community needs to reach a consensus what is the set of restrictions (EH, C/C++ and
Fortran I/O except printf?) in offloading region on devices

Mapping from OpenMP to GPUs

Team Work-groups Workgroups Thread Blocks Thread Group # of Teams

Thread Work-items Work-items Worker Thread EU Thread # of Threads per Thread Group

SIMD Work-item Work-item Warp (SIMT SIMD Lane (or SIMD1, SIMDZ2, SIMD4, SIMDS,
thread) “Channel”) SIMD16, SIMD32

» Multi-level parallelism is enabled via multiple OpenMP teams,
threads and SIMD lanes

 Permit use of GPU HW barrier across threads in a team

Permit OpenMP thread semantics (wait, nowait, etc.)

Allow synchronization across teams

Use “Teams” to exploit the whole machine (more porting needed)
Use OpenMP SIMD or compiler vectorization to exploit SIMD

« omp target [clause[[,] clausel],...]
 structured-block

« omp declare target
* [function-definitions-or-declarations]

* Map variables to a target device

* map ([map-type:] list) // map clause
* map-type := alloc | tofrom | to | from

« omp target [enter | exit] data [clause[[,]
clausel....]

 structured-block
« omp target update [clause[[,] clausel],...]
« omp declare target

» [variable-definitions-or-declarations

OpenMP 4.5/5.0 Subset for Offloading

+ Offload code to run on a target device

* Worksharing for acceleration
* omp teams/master/single [clausel[[,] clause],...]
» omp distribute/do/for [clause[[,] clause],...]

* Parallel and simd code to run on GPU
» omp parallel [clause[[,] clausel],...]
* omp simd

* A set of composite and combined constructs
[clause[[,] clause],...]

« E.g. #pragma omp target teams distribuite
parallel for simd

* Synchronization
» omp atomic [clause[[,] clause],...]
* map-type := alloc | tofrom | to | from
» omp critical [clause[[,] clause],...]
 structured-block

‘ OpenMP Runtime Support for Offloading

Runtime support routines on CPU Host

. EXTERN int omp get num devices (void);

. EXTERN int omp get initial device (void);

o EXTERN void *omp target alloc(size t size, int device num);

o EXTERN void omp_ target free(void *device ptr, int device num);
o EXTERN int omp target is present (void *ptr, int device num);

° EXTERN int omp target memcpy(void *dst, void *src, size t length,
size t dst offset, size t src offset, int dst device, int
src_device);

° EXTERN int omp target memcpy rect (void *dst, void *src, size t
element size,

int num dims, const size t *volume, const size t *dst offsets,
const size t *src offsets, const size t *dst dimensions,
const size t *src dimensions, int dst device, int src device);

o EXTERN int omp target associate ptr(void *host ptr, void
*device ptr, size t size, size t device offset, int device num);

o EXTERN int omp target disassociate ptr(void *host ptr, int
device num) ;

. EXTERN int omp is initial device (void);

o EXTERN int omp get initial device (void);

o EXTERN void kmp global barrier init (void); // Intel
externsion

. EXTERN void kmp global barrier (void); // Intel
externsion

. EXTERN void omp set default device(int dev num)

. EXTERN int omp get default device (void)

Device Runtime Routines for GPU

. EXTERN int omp get team num(void);

o EXTERN int omp get num teams (void);

° EXTERN int omp get team size(int);

° EXTERN int omp get thread num(void);
o EXTERN int omp get num threads (void) ;
. EXTERN int omp in parallel (void) ;

o EXTERN int omp get max threads (void) ;
o EXTERN int omp get device num(void) ;
. EXTERN int omp get num devices (void) ;

Notices & Disclaimers

.- This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com,
or from the OEM or retailer.

- Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

- Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Core, VTune, and OpenVINO are trademarks of Intel Corporation or its subsidiaries
in the U.S. and other countries.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

NVIDIA/PGI

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

PGl OPENMP 4.5 FOR MULTICORE CPUS

Supported in PGl Fortran, C and C++ for x86-64, OpenPOWER, Arm

Skylake, Rome, P9, Arm

TARGET mapped to host CPU(s) M P
Loops parallelized across host cores Open ®

SIMD directive for vectorization hints

Known limitations: DECLARE SIMD ignored, no TASK DEPEND/PRIORITY,
no LINEAR/SCHEDULE/ORDERED(N) clauses on FOR/DO loop construct,
no DECLARE REDUCTION

1 <ANVIDIA.

SCALABILITY-CHALLENGED OPENMP FEATURES

MASTER
SINGLE
CRITICAL
ORDERED
SECTIONS
BARRIER
SIMD (SAFELEN)
TASK
TASKLOOP
TASKGROUP
DEPEND
TASKWAIT
CANCEL
PROCBIND

omp_init lock()
omp_init lock with hint()
omp_set lock()
omp_test lock()
omp_unset lock()
omp_destroy lock()
omp_init nest lock()
omp_init nest lock with hint()
omp set nest lock()
omp_test nest_lock()
omp_unset nest lock()

omp_destroy nest lock()

OMP_SCHEDULE
OMP_NUM_THREADS
OMP_DYNAMIC
OMP_PROC_BIND
OMP_PLACES
OMP_NESTED
OMP_WAIT POLICY
OMP_MAX ACTIVE LEVELS
OMP_THREAD LIMIT
OMP_CANCELLATION
OMP_DISPLAY ENV
OMP_MAX TASK_PRIORITY

NVIDIA.

PGl OPENMP FOR NERSC-9/PERLMUTTER

Performance-oriented OpenMP for NVIDIA Tesla GPU-accelerated Nodes

Define a performance-oriented subset that is readily implementable and
encourages GPU programming in a style that is massively scalable

Existing OpenMP codes can port to GPU-accelerated Perlmutter nodes with
reasonable effort and modifications

OpenMP codes properly structured for GPUs compile and execute with
performance on par with or close to equivalent OpenACC

Codes that are not well-structured for GPUs may perform poorly but should
perform correctly

3 <ANVIDIA.

PGI/NERSC OPENMP 5.0 KEY LIMITATIONS®

Fortran/C/C++ target offload for Tesla GPUs | Beta mid-2020, Production 2021

Effectively ignored on CPU and GPU Compile-time error on CPU and GPU
memory management allocators/directives array sections with strides, array shaping,
for/do order(concurrent), prescriptive simd iterator modifier
declare simd conditional:lastprivate
nested parallelism linear/ordered(n) on for/do, standalone ordered
OMPD / OMPT support is not included scan, taskloop, cancellation, declare mapper

depend objects, depobj
user-defined reductions

binding/affinity requires reverse_offload, dynamic_allocators,
tasks (will be executed immediately) atomic_default_mem_order

Effectively ignored on GPU

Compile-time error on GPU

workshare, lastprivate, threadprivate, critical,
flush, ordered, sections

* Failure to list a given feature does not necessarily mean it is supported R —

GPU PORTING ADVICE FOR OPENMP PROGRAMMERS

PGI OpenMP subset for GPUs is not a re-compile and run solution
Re-order loops or transpose arrays to enable SIMD/SIMT
accesses in outermost loops
Use collapse(N) directives on loops to increase parallelism
Replace critical sections with atomics
Remove all |/0 statements, remove memory allocation
Don’t put large data structures on the stack

Use compiler feedback to identify and factor out unsupported
or non-scalable OpenMP constructs and API calls

Parallelism, Parallelism, Parallelism ..

5 <ANVIDIA.

GNU-RELATED

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

GNU Going Forward

« https://procurement.ornl.gov/rfp/6400016227/
— Solicitation No. 6400016227 : GNU Compiler Collection

“The primary purpose of this Statement of Work (SOW) is to bring the implementations of
OpenACC and OpenMP in the GCC compiler suite up to the latest versions of the
standards, and supporting the GPU-accelerators of interest to OLCF so that it becomes fully
capable with respect to the needs of OLCF users on OLCF and other platforms.”

“The expectation is that this work will be completed as quickly as reasonably possible, but
definitely prior to April 2022, in anticipation of the upcoming delivery of the new Frontier

system.”
® RFP Contact information: William Besancenez {Willy} besancenezwr@ornl.gov

%g{*K RIDGE |¢625ie

ional Laboratory | FACILITY

https://procurement.ornl.gov/rfp/6400016227/
mailto:besancenezwr@ornl.gov

Status of GNU compilers on Summif

%

ostencil
olbm
omriqg
md
palm
ep
clvrleaf
Cg
seismic
sp

csp
miniGhost
ilbdc
swim

bt

Benchmark
303.ostencil
304.olbm
314.omrig
350.md
351.palm
352.ep
353.clvrleaf
354.cg
355.seismic
356.5p
357.csp
359.miniGhost
360.ilbdc
363.swim
370.bt

OpenACC

Reference
time
14
45
95
25

w
~N
o

()]
w

NN W DN N
N N N O M
WO N 0VO o OO0 o1 O

36

N N W
N W O~

5
5
6
2

GNU
2.1.0

)
Q
(%]
%]
S~
M
Q

=
()

PGI 19.5

Unofficial SPEC ACCEL 1.2 results — Academic use

OAK RIDGE |55

National Laboratory | FACILITY

Benchmark
503.postencil
504.polbm
S14.pomriq
550.pmd
551.ppalm
552.pep
553.pclvrleaf
554.pcg
555.pseismic
556.psp
557.pcsp
559.omniGhost
560.pilbdc
563.pswim
570.pbt

OpenMP (offload)

GNU
2.1.0

XL
16.1.1-3

Reference

time

1145

Pass/Fail
109
122
621
241
544
231

333
282
818
859
397
653
159
780

=
)

PANEL DISCUSSION

S. DEPARTMENT OF _ Argonne National Laboratory is a
NERG U.S. Department of Energy laboratory r I I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

THANKS!

- DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory r l I I I
managed by UChicago Argonne, LLC.

National Laboratory NATIONAL LABORATORY

