
OPENMP BOF - EARLY EXPERIENCE

EARLY EXPERIENCE OF
APPLICATION
DEVELOPERS WITH
OPENMP OFFLOADING

erhtjhtyhy

February 4, 2020

MOTIVATION FOR THIS BOF
§ The current HPC environment is diverse and complex

– Variety of hardware and multiple vendors providing their own programming
interfaces and runtimes

§ Critical for application developers to consider portable (and even better
performance portable) solutions which can target different platforms across
vendors
– OpenMP is an open standard supported by nearly every vendor, and a

promising solution
§ Goals

– Present examples about how developers are using OpenMP
– Discuss lessons learned or best practices discovered
– Provide feedback on any of the current OpenMP implementations (any new

features desired?)
2

§ Hadia Ahmed

§ Colleen Bertoni

§ Reuben Budiardja

§ Barbara Chapman

§ Christopher Daley

§ Jack Deslippe

§ Johannes Doerfert

§ Douglas Doerfler

§ Brian Friesen

§ Rahul Gayatri

§ Yasaman Ghadar

§ Pieter Ghysels

§ Austin Harris

§ Oscar Hernandez

§ Brian Homerding

§ Gustav Jansen

§ Vivek Kale

§ Thorsten Kurth

§ JaeHyuk Kwack

§ Raymond Loy

§ Ye Luo

§ Piotr Luszczek

AUTHORS
§ Brian Mackie-Mason

§ Bronson Messer

§ Jose Monsalve Diaz

§ Matthew Norman

§ John Tramm

§ Tim Williams

§ Charlene Yang

§ Hadia Ahmed
§ Colleen Bertoni
§ Reuben Budiardja
§ Barbara Chapman
§ Christopher Daley
§ Jack Deslippe
§ Johannes Doerfert
§ Douglas Doerfler
§ Brian Friesen
§ Rahul Gayatri
§ Yasaman Ghadar

§ Pieter Ghysels
§ Austin Harris
§ Oscar Hernandez
§ Brian Homerding
§ Gustav Jansen
§ Vivek Kale
§ Thorsten Kurth
§ JaeHyuk Kwack
§ Raymond Loy
§ Ye Luo
§ Piotr Luszczek

AUTHORS
§ Brian Mackie-Mason
§ Bronson Messer
§ Jose Monsalve Diaz
§ Matthew Norman
§ John Tramm
§ Tim Williams
§ Charlene Yang

Minutes Presenter or Moderator
Fortran Session Tim Williams
GenASiS 4 Reuben Budiardja
GESTS 4 Oscar Hernandez
Thornado/Exastar 4 Austin Harris
E3SM 4 Matt Norman
NUCCOR 4 Gustav R. Jansen
GAMESS 4 JaeHyuk Kwack
XGC 4 Brian MacKie-Mason
Fortran Session Q&A 15 Tim Williams, all presenters
C/C++ Session Oscar Hernandez
LAMMPS SNAP mini-app 4 Rahul Gayatri
MILC SU3 matrix-multiply mini-app 4 Doug Doerfler/Chris Daley
HPGMG 4 Hadia Ahmed/Chris Daley
QMCPack 4 Ye Luo/Thomas Applencourt
XSBench 4 John Tramm
Numerical Libraries 4 Piotr Luszczek
C/C++ Session Q&A 15 Oscar Hernandez, all presenters

5

OPENMP RESOURCES

§ OpenMP website
– https://www.openmp.org

§ OpenMP Validation and Verification
– https://crpl.cis.udel.edu/ompvvsollve/

§ OpenMP YouTube Channel
– https://www.youtube.com/user/OpenMPARB/

§ At ECP Annual Meeting:
– OpenMP 4.5 and 5.0 Tutorial (Offload)
– Wed Feb 5, 2020, 2:30 PM - 6:00 PM in Discovery A

6

FORTRAN SESSION

OPENMP BOF - EARLY EXPERIENCE

TARGETING GPUS
USING OPENMP
DIRECTIVES ON SUMMIT
WITH GENASIS

erhtjhtyhy

Reuben D. Budiardja

Oak Ridge Leadership Computing Facility

February 4, 2020

APPLICATION
General Astrophysics Simulation System (GenASiS)

– Current target: 3D position space + 1D momentum space the simulations of

core-collapse supernovae; Towards 3D + 3D (sustained exascale)

– Previous results: studied of fluid instabilities in supernova dynamics, discovered

exponential magnetic field amplification in progenitor star

Code characteristics:
– Modern Fortran (mostly F2008 + F2008, F2018)

– Modular, object-oriented design, extensible

– OpenMP 4.5 for offloading (recent work)

9

STORAGEFORM CLASS
A Class for data and metadata; the ‘heart’ of data storage facility in GenASiS.

StorageForm % Value (nCells, nVariables)
e.g. Pressure => StorageForm % Value (:, 1),

Density => StorageForm % Value (:, 2), ...

10

D P E ... D’ P’ E’ ...

C
P

U G
PU

Tells OpenMP data location on GPU
→avoid (implicit) allocation &

transfer

StorageForm % AllocateDevice ()

11

Offloading a Computational Kernel call F % Initialize &
([nCells, nVariables])

call F % AllocateDevice ()
call F % UpdateDevice ()
call AddKernel &
(F % Value (:, 1),
F % Value (:, 2), &
F % Value (:, 3))

No implicit data
transfer,

no explicit map()

Persistent allocation and association

LESSON LEARNED & BEST PRACTICES
Explicit management of data movement is necessary for overall performance
– use “pinned memory” → no mechanism in OpenMP 4.5, but in 5.x

• resorted to wrapping CUDA calls for now
– persistent host ⇄ GPU data association done via class StorageForm method

Avoid complicated data structure in kernels
– pass “simple” arrays as subroutine arguments

Use “associate” construct to help match what OpenMP maps
– associate (v_1 => F_Value (:, F % Velocity(1)))

Speedups about ~15X on per Summit node (6 GPU to 42 CPU cores) for
hydrodynamics solvers

12

PROBLEM ENCOUNTERED
With IBM XL, “-qoffload -qsmp=omp” flag on module with derived-type (DT)
definition implies offloading the DT
– Unresolved linking errors if DT has type-bound procedure calling host-only

subroutines
– IBM PMR → !$omp declare target device_type(host)
– Our solution: separate out “kernel” subroutines using F2008 submodules

• Reduce # files compiled with those flags → faster compilation overall

▪With OpenMP 4.5, no good way to have the same code / kernel for both OpenMP
threads and offload
– Workaround: code duplications with different OpenMP pragmas
– Future: OpenMP 5 meta-directives?

13

OPENMP BOF - EARLY EXPERIENCE

FOURIER TRANSFORM
CODE

erhtjhtyhy

KIRAN RAVIKUMAR (GEORGIA TECH)
PK YEUNG (GEORGIA TECH)
OSCAR HERNANDEZ (ORNL)

February 4, 2020

INTRODUCTION
§ Multidimensional FFT provides a case study of wide relevance

– Fluid dynamics, weather forecasting, signal processing are some applications that require
Fourier transforms

– Scalability often ultimately limited by communication costs
§ State-of-the-art heterogeneous machines provide new opportunities

– Computations accelerated using GPUs
– Overlap operations to hide GPU compute, data transfers and network communication

§ Languages, programming models, and dependency on libraries
– Original code in CUDA Fortran
– Port to Fortran using OpenMP to target GPUs for portability
– CUDA FFT library for FFTs on GPU
– MPI library for all-to-all transpose

15

BRIEF DESCRIPTION AND MOTIVATION
§ Successfully developed a batched asynchronous algorithm to solve large problem sizes

without being limited by GPU memory
– CUDA Fortran code with asynchronous executionusing CUDA Events and Streams
– Presented results collected on Summit at SC19 :
– K. Ravikumar, D. Appelhans, and P. K. Yeung. GPU acceleration of extreme scale pseudo-spectral

simulations of turbulence using asynchronism. In Proceedings of The International Conference for
High Performance Computing, Networking and Storage Analysis (SC’19), Denver, CO, USA. ACM,
New York, NY, USA, https://doi.org/10.1145/3295500.3356209 , 2019.

§ Motivation for current work
– Future systems may not support CUDA
– Use OpenMP for a more portable code

§ Target systems:
– Summit: Two P9 CPUs and 6 NVIDIA NV100 GPUs using XLF compilers
– Frontier: AMD CPUs/GPUs with Cray Fortran and gfortran compilers

16

https://doi.org/10.1145/3295500.3356209

CURRENT APPROACH

17

eg., call cufft library
• 1 slab of data per MPI task
• Vertically divided among

multiple GPUs (3 in above
figure)

• 4 pencils per slab : different
operations running in parallel
on each pencil

1D FFT EXAMPLE USING OPENMP

18

• Forward & Inverse Transform
• Transformed Data scaled and

compared with initial data using
OpenMP Target Loop

• Expect scalar multiplication to be
performed after FFT finishes

• Gives incorrect results!

• Task dependency enforced on host
• Task performing FFT is considered

complete when thread finishes
launching cuFFT kernel

• Dependency not enforced based on
when cuFFT kernel finishes on GPU

LESSONS LEARNED AND NEXT STEP
§ Lessons learned

– Use cudaEventRecord and cudaEventSynchronize to ensure host waits
for cuFFT kernel to complete

– Above work around by mixing CUDA Fortran and OpenMP: but not a permanent solution

§ Next step
– Explore TASK DETACH and other OpenMP 5.x features that might help when compiler

support is available

19

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

THORNADO
(EXASTAR)

erhtjhtyhy

J. AUSTIN HARRIS (ORNL)
M. PAUL LAIU (ORNL)
RAN CHU (UTK)
EIRIK ENDEVE (ORNL)

February 4, 2020

EXASTAR
§ Component-based multi-physics AMR-based toolkit for simulating stellar explosions

(e.g., supernovae, neutron-star mergers)
– Couple physics in AMR-based Flash/Castro codes

§ Key physics modules
– Spectral neutrino transport (compiler directives and linear algebra libraries)
– Nuclear burning (compiler directives and linear algebra libraries)
– Magnetohydrodynamics (compiler directives)
– Gravity (compiler directives)
– Equation of state (compiler directives)

22

THORNADO

§ High-order discontinuous Galerkin (DG) methods
§ Implicit-Explicit (IMEX) time integration

– Explicit neutrino advection operator
– Implicit neutrino collision operator

• Nonlinear solver
• Tabulated microphysics

§ Designed to be incorporated into AMR-based codes
– Focus on node-level performance

§ GPU port of original CPU code via compiler directives and linear algebra libraries

ExaStar proxy application for spectral neutrino transport

23

LINEAR ALGEBRA LIBRARIES

24

COMPILER DIRECTIVES

THORNADO GPU STRATEGY

DELEPTONIZATION WAVE TEST PROBLEM

25

§ Proxy for CCSN problem

§ Evolve one “block” with thornado
– Energy discretization: 32 points
– Spatial discretization: 123 points

§ ~100x speedup relative to serial CPU code

PROBLEMS ENCOUNTERED (IF ANY)
§ Compilers

– Very long compile time with IBM XL Fortran using OpenMP OL

– Poor kernel launch configuration for some kernels with OpenMP OL (XL)

§ Migration from other programming models

– Challenging to port iteration kernels due to register pressure (e.g., Newton-Raphson)

• Solved by packing “active” elements and breaking up iteration into smaller kernels

§ Interoperability/libraries

– Customized MAGMA routines for pre-allocated work arrays

– Complicated interfaces for batched linear algebra routines with Fortran

(e.g., array of pointers on device)

§ Tools

– Arm MAP useful for low-overhead, easy-to-use sampling for initial profiling

26

LESSONS LEARNED AND NEXT STEP
§ Lessons learned

– Write ”portable” CPU code (e.g., tight loop nests, libraries when possible)
– Often faster for CPU as well

§ Next step
– Benchmarking and scaling with FLASH+thornado in AMR framework
– GPU porting of additional microphysics and solvers
– Performance implications for higher-order DG
– Optimization/tuning

• Asynchronous GPU kernels

27

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

E3SM EARLY OPENMP
EXPERIENCES

erhtjhtyhy

MATTHEW NORMAN (ORNL)

February 4, 2020

ENERGY EXASCALE EARTH SYSTEM MODEL
(E3SM)
§ Coupled high-resolution climate model

– Atmospheric component is the most expensive
– Better approximated clouds with embedded Cloud Resolving Models (CRMs)

§ Cloud Resolving Model (CRM) Code is in Fortran 90
– About 10K Lines of Code, but consumes > 90% of the runtime
– No MPI communication in the CRM code

30

ENERGY EXASCALE EARTH SYSTEM MODEL
(E3SM)
§ Past Work

– First ported to GPUs with OpenACC
– Exposed parallelism by pushing loops down callstack and promoting variables
– Had to remove pointers and derived types from all kernels (PGI bugs)

§ Motivation for current work
– PGI bugs in OpenACC on Summit
– PGI unlikely to be available on Frontier
– Greater portability

31

CURRENT APPROACH
§ Make the CRM code as portable as possible

– Not allowing any derived types or classes (no “%” in data statements or kernels)
– Allocate model with a custom C++ allocator that uses CUDA managed memory

• Uses cudaMallocManaged and cudaMemPrefetchAsync for performance
• Also maps data in OpenACC and OpenMP runtimes via:

– acc_map_data() in OpenACC
– omp_target_associate_ptr() in OpenMP offload

• Forces offload runtimes to ignore data transfers and leave it to the CUDA runtime instead
• Now, you no longer need data statements in either offload approach

– In this manner, OpenMP and OpenACC APIs are nearly one-to-one
• Can switch between the two with preprocessor directives

– Examples: https://github.com/mrnorman/YAKL | https://github.com/mrnorman/gator
§ Previous approach has been demonstrated in a smaller app
§ Currently working to port all of the CRM code to OpenMP in this manner

32

https://github.com/mrnorman/YAKL
https://github.com/mrnorman/gator

PROBLEMS ENCOUNTERED (IF ANY)
§ Compilers

– GNU OpenMP is pretty far behind in performance and coverage
– Not easy to access Cray compiler except through ECP test machines
– Cray and IBM XL have different definitions of simd and parallel do on the GPU

• Fairly easily handled with preprocessors
– Cray compiler fails in the omp_target_associate_ptr() approach

• But they are aware of it and working on it

33

LESSONS LEARNED AND NEXT STEP
§ Lessons learned

– Simplify data used in kernels as much as possible
• Shield kernels and data statements from classes via parameter passing

– For large codes with hundreds of kernels and variables, it’s best not to have to use data
statements at all
• Achievable through data mapping and C++ allocations with CUDA Managed Memory

§ Next Steps
– Continued answer bug and performance bug reports to vendors

34

ORNL is managed by UT-Battelle LLC for the US Department of Energy

OPENMP BOF EARLY EXPERIENCE - NUCCOR

Gustav R. Jansen <jansengr@ornl.gov>

36

NUCCOR (NUCLEAR COUPLED CLUSTER OAK RIDGE)

Science
• Computing properties of atomic nuclei

from forces between protons and
neutrons:

– Binding energies (mass)
– Radii
– Density distributions
– Excitation spectra
– Radioactive properties • Developed at ORNL for the last 20 years

• Fortran 2003/2008/20XX
• Based on NTCL (Nuclear Tensor

Contraction library
• Many (>1M) dense tensor contractions

37

TYPICAL TENSOR CONTRACTION – SIMPLE VERSION

• Sizes vary many orders of
magnitude

• !" ≪ $, & ≪ '(≪)
• Different compilers takes

different directives

• Performance not stable
between compilers

• Performance not there
compared to CUDA and
HIP implementations

38

WHAT WE REALLY WANT TO DO!

Transpose Transpose Gemm Transpose

Transpose Transpose Gemm Transpose

Transpose Transpose Gemm Transpose

Transpose Transpose Gemm Transpose

OpenMP Library

39

SUMMARY

• Performance not quite there

• Fortran compilers need to catch up

• Must be able to combine OpenMP with accelerated libraries

Thank you!

OPENMP BOF - EARLY EXPERIENCE

GAMESS RI-MP2
FORTRAN KERNEL

W/ OPENMP
OFFLOADING

erhtjhtyhy

JAEHYUK KWACK (ANL)
BUU PHAM (IOWA STATE UNIVERSITY)
COLLEEN BERTONI (ANL)

February 4, 2020

GAMESS
§ A general quantum chemistry and ab initio electronic structure code

– ab initio SCF energies (e.g. RHF and MCSCF)
– Force fields (e.g., the Effective Fragment Potential)
– Perturbative corrections to Hartree-Fock (e.g., MP2 and RI-MP2)
– Near-linear scaling fragmentation methods (e.g., Fragment Molecular

Orbital method)
– ab initio gradients, hessians, and geometry optimizations

§ Languages, programming models, and dependency on libraries
– Mainly written in Fortran
– An optional C++ library with re-implementations of certain methods
– BLAS (e.g., MKL, ESSL, CUBLAS)
– An MPI parallelization library (DDI library) written in C
– MPI + X

• OpenMP for CPU cores
• CUDA for NVIDIA GPU accelerators.

41

Fullerene (c60)

Water cluster (w60)

GAMESS RI-MP2 FORTRAN KERNEL
§ Written in Fortran; therefore it has limited possible options for GPU computing.
§ Need a performance portable model on GPUs from multiple vendors (Intel, NVIDIA, AMD)
§ FMO/RI-MP2 is one of the quantum chemistry algorithms of interest

– Algorithm of interest in GAMESS ECP problem

42
42

RI-MP2 equations:

SCALE-UP
§ Restructured the RI-MP2 kernel to increase

concurrency on GPUs
§ Testing multiple BLAS kernels

– CUBLAS, CUBLASXT and NVBLAS
– Intel oneMKL on Aurora testbed (in

progress)

43

Input: c60.kern WTime(s) Speedup

Serial w/ 1 core of P9 342.697 0.036 x

OpenMP threading + ESSL
w/ 42 threads on 2 P9 12.231 1 x

OpenMP offloading + NVBLAS
on 1 V100 1.734 7.05 x

OpenMP offloading + CUBLAS
on 1 V100 1.983 6.17 x

OpenMP offloading + CUBLASXT
on 1 V100 1.728 7.08 x

Similar to
the peak ratio of

one V100 GPU over
two IBM P9 CPUs

(i.e., 7.22x)

§ Testing MPI + OpenMP offloading on multiple

GPUs and multiple compute nodes on Summit

SCALE-OUT

44

The peak ratio of

six V100 GPUs over two IBM P9

(i.e., 43.33x)

PROBLEMS ENCOUNTERED (IF ANY)
§ Compilers

– IBM XLF on OLCF Summit works fine
– Intel IFORT on ALCF JLSE works fine

§ Migration from other programming models
– Smoothly migrated in a week during ECP OpenMP Hackathon

§ Interoperability/libraries
– CUBLAS and CUBLASXT make Fortran kernel messy, but functional.
– NVBLAS uses standard BLAS calls; it helps code keep clean.

• However, NVBLAS and CPU math library (e.g., ESSL, MKL, and ArmPL) use the same symbol
(e.g., DGEMM), and it may result in unexpected errors or lower performance on
heterogeneous architecture.

– OpenMP 5 declare variant directive may figure out this symbolic conflict

§ Tools
– NVPROF works fine

45

LESSONS LEARNED AND NEXT STEP

§ Lessons learned
– On a single NVIDIA V100 GPU, the OpenMP offloading kernels show

• more than 7x speedup over 42 threaded code on IBM P9 processors,
• around 200 x speedup over the serial run on IBM P9 processors.

– On the same number of Summit nodes, the MPI+OpenMP offloading kernels show
• More than 40x speedup over the MPI + OpenMP threading kernels.

§ Next step
– Near term

• Actively working on Aurora testbed for Intel GPUs
• Extending OpenMP offloading implementations to other kernels of GAMESS

– Long term
• Running GAMESS on NERSC Perlmutter, ALCF Aurora and OLCF Frontier at scale

§ Anything else

46

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

EARLY OPENMP
EXPERIENCE WITH
COLLISION KERNEL

erhtjhtyhy

BRIAN MACKIE-MASON
XGC TEAM

February 4, 2020

XGC INTRODUCTION
§Collision operator used after particles pushed
§Uses Landau interaction tensor, advection/diffusion tensors, elliptic

integrals
– R. Hager, et. al., Journal of Computational Physics 315 (2016),

pp. 644-660
– E.S. Yoon, et. al., Physics of Plasmas 21 (2014), 032503

§Pre-exascale physics simulating two different species (deuteron-
electron)

§Exascale goal is to simulate top ten ion impurity species of ITER

49

PROGRAMMING MODEL CHOICES
§ Cori/Theta (MIC) – OpenMP 3.0
§ Titan/Summit – OpenACC
§ Perlmutter – OpenMP 4.5+
§ Aurora – OpenMP 4.5+
§ Frontier – OpenMP 4.5+
§ Etc…

50

COMPILATION

51

§ IBM XL compilers
(xlf2008_r)

§FC = mpifort
§FFLAGS = -llapack -lblas

-qsmp=omp -qoffload –O2
§XGCFLAGS =

-D_OPENMP_OFFLOAD

• PGI compilers
(pgfortran 19.4)

• FC = mpifort
• FFLAGS = -llapack

-lblas -mp -fast –O3
• ACC_FLAGS = -acc -

ta=tesla:cc70,ptxinfo,ma
naged
-Minfo=accel
-Mnostack_arrays
-DUSE_ASYNC

OPENACC->OPENMP OFFLOAD (MEMORY)

52

Result: Appears to work based on other observations

OPENACC->OPENMP OFFLOAD (SUCCESS)

53

Result:
~4.5x
speed-up

OPENACC->OPENMP OFFLOAD (W.I.P.)

54

//code

Result: Incorrect result. Two directives diverge with external module call.

THANK YOU!
BMACKIEMASON@ANL.GOV

FORTRAN SESSION Q&A

C/C++ SESSION

OPENMP BOF - EARLY EXPERIENCE

SNAP ON GPU USING
OPENMP~4.5

erhtjhtyhy

RAHUL GAYATRI
AIDAN THOMPSON
STAN MOORE

February 4, 2020

EXAALT – ECP PROJECT
§ ECP EXAALT project seeks to extend the accuracy, length, and time scales of material

science simulations for fission/fusion reactors using LAMMPS MD

§ Primary KPP target is MD of nuclear fusion materials that uses the SNAP interatomic

potential in LAMMPS

– Performance directly depends on the single node performance of SNAP

§ C++, Math Libraries (math.h)

59

TESTSNAP – A PROXY APP FOR LAMMPS/SNAP
§ TestSNAP - an independent

standalone application for the
SNAP module in LAMMPS

§ Testbed for various
parallelization strategies and
optimizations

§ Successful optimizations are
merged into LAMMPS

60

for(num_atoms) // loop over atoms
{

build_neighborlist(); //build neighborlist for each atom
compute_ui();
compute_yi();
for(num_nbors) //loop over neighbors
{

compute_duidrj();
compute_dbidrj();

update_force(); //update force for (atom,nbor) pair
}

}

TEST-SNAP – REFACTORED

61

for(num_atoms)
{

build_neighborlist();
compute_ui();
compute_yi();
for(num_nbors)
{

compute_duidrj();
compute_dbidrj();

update_force();
}

}

for(num_atoms)
build_neighborlist();

for(num_atoms)
compute_ui();

for(num_atoms)
compute_yi();

for(num_atoms)
for(num_nbors)

compute_duidrj();

for(num_atoms)
for(num_nbors)

compute_dbidrj();

for(num_atoms)
for(num_nbors)

update_force();

OPENMP OFFLOAD – MAP DATA TO DEVICE

62

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)

OPENMP OFFLOAD – DISTRIBUTE WORK
ACROSS TEAMS AND THREADS

63

void compute_ui
{
#pragma omp target teams distribute parallel for

for(num_atoms)
{

……
}

}

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)

OPENMP OFFLOAD – COLLAPSE ATOM AND
NEIGHBOR LOOPS

64

void compute_ui
{
#pragma omp target teams distribute parallel for

for(num_atoms)
{

……
}

}

void compute_duidrj
{
#pragma omp target teams distribute parallel for\
collapse(2)

for(num_nbor)
for(num_atoms)
{
……

}
}

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)

OPENMP OFFLOAD – MAP THE OUTPUT BACK
TO HOST

65

void compute_ui
{
#pragma omp target teams distribute parallel for

for(num_atoms)
{

……
}

}

void compute_duidrj
{
#pragma omp target teams distribute parallel for\
collapse(2)

for(num_nbor)
for(num_atoms)
{
……

}
}

#pragma omp target exit data map(from:this->deidrj[0:deidrj.size])

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)

PERFORMANCE AND LESSONS LEARNT
§ Optimized Kokkos implementation

– Within 90% of the equivalent optimized kokkos implementation

§ Lessons learnt

– Optimize on data movements

– Column major data access pattern for GPUs (row major : 3x slower for OpenMP~4.5 SNAP

implementation)

– No performance differences with #pragma omp alloc vs #pragma omp map to/from if its done

same number of times

– For multiple synchronization points between host-device #pragma alloc and #pragma update

to is a preferable

66

Compilers
XL – summit (xl/16.1)

Clang – Cori-GPU (llvm-10.0)

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

SU(3) BENCHMARK
(QCD PROXY)

erhtjhtyhy

CHRIS DALEY (LBNL)
DOUG DOERFLER (LBNL)

February 4, 2020

OVERVIEW
§ The SU(3) benchmark calculates a matrix-matrix multiply of complex number matrices

– Derived from the MILC Lattice QCD code

§ The benchmark performs ~4 million 3x3 matrix-matrix multiplies
– Operations on 3x3 matrices are a fundamental building block of LQCD applications

§ It is written in C++ and has no library dependencies

§ Doug Doerfler has created GPU implementations in CUDA, OpenCL, OpenMP target offload,
OpenACC, and SYCL: https://bitbucket.org/dwdoerf/su3_bench

69

https://bitbucket.org/dwdoerf/su3_bench

OPENMP TARGET OFFLOAD APPROACH

70

#pragma omp target teams distribute
for(int i=0; i<1048576; ++i) {

#pragma omp parallel for collapse(3)
for(int j=0; j<4; ++j) {
for(int k=0; k<3; k++) {
for(int l=0; l<3; l++) {

Complx cc;
for(int m=0; m<3; m++) {
cc += d_a[i].link[j].e[k][m] * d_b[j].e[m][l];

}
d_c[i].link[j].e[k][l] = cc;

}
}

}
}

Use teams parallelism for the ~1
million sites

Use thread parallelism for the
matrices associated with the 4
“links” per site

MIXED OPENMP TARGET OFFLOAD
PERFORMANCE ON CORI-GPU AND SUMMIT

71

Analytical roofline on
NVIDIA V100 GPUs

§ Benchmark is memory
bandwidth bound but is
sensitive to overheads

§ Terrible performance in
LLVM/Clang because of
excess GPU memory
traffic (implicit OpenMP
flushes)

OpenMP:
Up to 60%
of CUDA
perf.

MANUAL SPMD OPTIMIZATION FOR
LLVM/CLANG

72

#pragma omp target teams num_teams(NTEAMS) thread_limit(NTHREADS)
{
#pragma omp parallel
{
int total_teams = omp_get_num_teams();
int team_id = omp_get_team_num();
int sites_per_team = (total_sites + total_teams - 1) / total_teams;
int istart = team_id * sites_per_team;
if (istart > total_sites) istart = total_sites;
int iend = istart + sites_per_team;
if (iend > total_sites) iend = total_sites;

// This is the total_sites loop manually chopped up
for (int i = istart; i < iend; ++i) {

#pragma omp for collapse(3)
for (int j=0; j<4; ++j) {

No code between teams and
parallel OpenMP directives

Performance improves by 33x to
401 GFLOP/s

LESSONS LEARNED AND NEXT STEP
§ All compilers successfully ran the benchmark but performance was varied
§ We needed to manually SPMDize the code to get good performance with LLVM/Clang

– This avoided O(1 million) implicit memory flushes
– Future versions of LLVM/Clang will hopefully include the TRegion enhancement [1] to

make manual optimization unnecessary
§ We plan to profile the benchmark to identify the remaining sources of differences between

OpenMP compilers

[1] Johannes Doerfert, Jose Manuel Monsalve Diaz, and Hal Finkel. "The TRegion Interface
and Compiler Optimizations for OpenMP Target Regions." In International Workshop on
OpenMP, pp. 153-167. Springer, Cham, 2019.

73

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

HPGMG-FV

erhtjhtyhy

CHRISTOPHER DALEY - LBNL
HADIA AHMED - LBNL
MAT COLGROVE - NVIDIA

February 4, 2020

HPGMG-FV OVERVIEW
§ HPGMG-FV is a finite-volume based geometric multigrid solver

– It is a standalone benchmark used to produce an alternative Top-500 list

§ The selected configuration is a Full Multigrid (FMG) which is 4th order accurate and uses the
out-of-place GSRB smoother

§ The upstream version of HPGMG-FV is written in C99, MPI, and OpenMP

76

HPGMG-FV FOR GPUS
§ There is already a CUDA version of HPGMG-FV for GPUs:

https://bitbucket.org/nsakharnykh/hpgmg-cuda
– This version depends on managed memory (cudaMallocManaged)

§ We have developed OpenACC and OpenMP target offload versions of HPGMG-FV to
improve the chance that this benchmark is included in the SPEChpc® 2020 benchmark suite
– 1:1 translation of CUDA kernels to OpenACC and OpenMP target offload
– Data is still allocated using cudaMallocManaged

• Programmer-controlled data movement is work in progress

77

https://bitbucket.org/nsakharnykh/hpgmg-cuda

78

IBM 16.1.1 PGI 19.9 (OpenACC) LLVM/Clang 10.0 Cray 9.1.0 - LLVM
increment_block ✓ ✓ ✓ ✓
copy_block ✓ ✓ ✓ ✓
extrapolate_betas ✓ ✓ ✓ ✓
residual ✓ ✓ VE (success at –O0) VE (success at –O0)
rebuild ✓ ✓ VE (success at –O0) VE (success at –O0)
color_vector ✓ ✓ ✓ ✓
smooth ✓ ✓ VE (success at –O0) VE (success at –O0)
restriction ✓ ✓ ✓ ✓
apply_BCs_v1 ✓ ✓ ✓ ✓
apply_BCs_v2 ✓ VE ✓ ✓
apply_BCs_v4 ✓ VE ✓ ✓
interpolation_v4 ✓ CE (can workaround) VE (success at –O0) VE (success at –O0)
Interpolation_v2 ✓ CE (can workaround) VE (success at –O0) VE (success at –O0)
zero_vector ✓ ✓ ✓ ✓
scale_vector ✓ ✓ ✓ ✓
shift_vector ✓ ✓ ✓ ✓
mul_vector ✓ ✓ ✓ ✓
add_vector ✓ ✓ ✓ ✓
sum ✓ ✓ ✓ ✓
max_abs ✓ ✓ ✓ ✓

ADDING DIRECTIVES WAS SIMPLE –
BIGGEST CHALLENGE IS CORRECTNESS

20 GPU
kernels:

CE =
Compilation
Error

VE =
Verification
Error

INITIAL OPENMP OFFLOAD PERFORMANCE
WITH IBM COMPILER IS ENCOURAGING

79

§ No performance results for

LLVM/Clang or Cray

because of –O0

requirement

§ We are currently working

with LLVM/Clang

developers to identify and

fix the issue:

https://bugs.llvm.org/show

_bug.cgi?id=44390

70% of CUDA perf.

https://bugs.llvm.org/show_bug.cgi?id=44390

LESSONS LEARNED
§ Easy to translate from CUDA launch configuration to OpenACC / OpenMP loops

– However, we found several compiler bugs when using strict correctness tests

§ All the tested compilers (IBM, PGI, Clang, Cray) successfully interoperate with CUDA
– CUDA allocated data can be used in OpenACC / OpenMP kernels
– CUDA kernels can be used instead of incorrect OpenACC / OpenMP kernels

§ Poorly documented compiler options made benchmark validation harder, e.g. “-Xllvm2ptx -
nvvm-compile-options=-fma=0” to turn off fused-multiply-add in IBM compiler

80

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

REAL-WORLD OPENMP
4.5 EXPERIENCE WITH
QMCPACK

erhtjhtyhy

YE LUO, CPS & ALCF, ARGONNE
THOMAS APPLENCOURT, ALCF, ARGONNE

February 4, 2020

QMCAPCK
n QMCPACK, is a modern high-performance open-source Quantum Monte Carlo

(QMC) simulation code for electronic structure calculations of molecular, quasi-2D
and solid-state systems.

n The code is C/C++ and adopts MPI+X(OpenMP/CUDA)
n Monte Carlo: massive Markov chains (walkers) evolving in parallel. 1st level

concurrency. Good for MPI and coarse level threads.
n Quantum: The computation in each walker can be heavy when solving many body

systems (electrons). 2nd level concurrency. Good for fine level threads and SIMD.
n Math libraries: BLAS/LAPACK, HDF5, FFTW

83

GPU STATUS
§ Legacy CUDA implementation efficient for small problem sizes

- Limited functionality

- Not portable to non NVIDIA GPUs.
§ Need a performance portable design to cover all current and Exascale systems

- Refactor with a more flexible code architecture (C++)

- Using portable programming model (OpenMP, Kokkos) for accelerators
§ Three sets of code for different needs

- Standalone fake kernels for testing OpenMP compilers

- MiniQMC containing OpenMP offload having QMCPACK kernels with fake input

- QMCPACK full application with OpenMP offload to feel the real-world.
84

FAKE KERNELS VALIDATING COMPILERS
§ OpenMP V&V improves a lot but still

has blind spots
§ Fake GEMV kernels to validate

OpenMP usage in QMCPACK
§ Correctly running on Nvidia, AMD,

Intel GPUs recently

§ Cover many compilers

§ Still need to try PGI on NVIDIA
cards and GCC on AMD cards

85

https://github.com/ye-luo/openmp-
target/wiki/GEMV-tests

MINIQMC IS A CHALLENGE
§ Functionality bugs

l Basic math functions
l Declare persistent data on device
l Static linking fat binaries

n Needed for performance
n Asynchronous tasking

n Multi GPU stream/queue support

86

XL is the only survival
Other compilers need further
improvements

QMCPACK RUNS
§ Runs on Summit with XL compiler

§ Runs on AMD Radeon VII card

with AOMP compiler

§ QMCPACK developers will keep

improve the adoption of OpenMP

§ Compiler developers can improve

the quality of compiler frontend,

openmp runtime library to help

boosting performance.

87

Let us make OpenMP shine

on all exascale systems

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

MONTE CARLO
PARTICLE TRANSPORT
CASE STUDY: XSBENCH

erhtjhtyhy

JOHN TRAMM

February 4, 2020

Background
§ Mini-app representing key kernel

of Monte Carlo particle transport
simulation

§ Features stochastic access
pattern of large data table
structures

90

Neutron

Atom

Code Details
§ C

§ No library dependencies

§ Versions available: OpenMP (threading), OpenMP (offloading), OpenCL, CUDA, SYCL

91

• XSBench is a mini-app representing a key kernel
from the full application OpenMC

• Experience with performance and limitations for
different programming models will inform model
selection decision for OpenMC

2.4

3.2

2.1

3.1

1.0

2.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

CUDA CUDA
(Optimized)

OpenCL hipSYCL OpenMP
Offload

(Xeon host,
clang-ykt)

OpenMP
Offload

(Power9 host,
xlc_r)

FO
M

XSBench FOM Performance on V100
(Higher is Better)

RESULTS

92

LESSONS LEARNED AND NEXT STEPS
§ Lessons learned

– OpenMP offloading relatively easy to implement
– Available compilers worked well – no bugs.
– IBM XL compiler generated fast code (better than naive CUDA implementation!)
– However, clang-ykt was 2.5x slower than IBM XL

§ Next steps
– For full application, OpenMC, we are planning to use OpenMP offloading
– Reasons:

• Development team already familiar with OpenMP threading model, pragma verbiage
• Performance was very good
• Appears it will be portable to a variety of exascale systems

93

THANK YOU!

OPENMP BOF - EARLY EXPERIENCE

OPENMP 4+ IN
NUMERICAL LIBRARIES:
MAGMA, PLASMA, AND
SLATE

erhtjhtyhy

MARK GATES (SLATE)
PIOTR LUSZCZEK (PLASMA)
STANIMIRE TOMOV (MAGMA)

February 4, 2020

PARALLEL NUMERICAL LINEAR ALGEBRA
§ Numerical linear algebra: scope

– Linear systems: Ax=b
– Least squares: min||Ax-b||
– Eigenvalue problems: Ax=!x
– Generalized eigenvalue problems: Ax=!Bx
– Singular value problem: Av="u
– Decompositions: Cholesky, LU, LDLT, QR, Schur, UΣVT

– Sparse, batched, DNN tensors
§ Languages, programming models, and dependency on libraries

– C, C++, Fortran bindings , CUDA (Summit), HIP (Frontier), OpenCL (Aurora)
– OpenMP, MPI
– Dependency: BLAS and LAPACK

• CPU: Accelerate, ARM Perf. Lib., ESSL, libSci, MKL, OpenBLAS
• GPU: cuBLAS, hipBLAS, rocBLAS

96

MAGMA, PLASMA, SLATE: CPU & GPU WORK
§ OpenMP features on CPU

– Basic work sharing loops
– Tasks and task loops
– Data clauses: in, out, inout
– Named critical regions

§ Previous or current GPU work
– MAGMA: CUDA, OpenCL (clMAGMA)
– PLASMA: Offload targets: MAGMA backend (magmaBLAS) or OpenMP offload
– SLATE: targets are CPU, CPU-nested, GPU, GPU-batched

§ Motivation for current work
– Summit: OpenMP + cuBLAS
– Aurora: OpenCL + MKL + L0
– Frontier: hipMAGMA + rocBLAS

97

PROBLEMS ENCOUNTERED
§ Compilers

– Older XL: unsupported named critical region across compilation units
– Older GCC: no support for data-dependent tasks

• Still widely available and installed by default

§ Migration from other programming models
– Abandoned in-house dataflow tasking runtime called QUARK

§ Interoperability/libraries
– The middle ground: must support both threading in lower-level BLAS/LAPACK and in

upper-level applications

§ Tools
– Looking into using the OMPT layer for auto-generation of tracing layer

§ Reproducibility support

98

LESSONS LEARNED AND NEXT STEPS
§ Lessons learned

– Using conservative subset of modern OpenMP helps us with portability

§ Next steps with OpenMP 5
– Memory allocators
– Native kernels across vendor hardware and math libraries

§ Portability testing across compilers
– Apple LLVM
– GCC 6+
– IBM XL C/C++
– Intel + MKL (iomp and gomp)
– PGI

99

THANK YOU!

MARK GATES (SLATE)
MGATES3@ICL.UTK.EDU

PIOTR LUSZCZEK (PLASMA)
LUSZCZEK@ICL.UTK.EDU

STANIMIRE TOMOV (MAGMA)
TOMOV@ICL.UTK.EDU

C/C++ SESSION Q&A

THANKS!

