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MOTIVATION FOR THIS BOF
§ The current HPC environment is diverse and complex

– Variety of hardware and multiple vendors providing their own programming 
interfaces and runtimes

§ Critical for application developers to consider portable (and even better 
performance portable) solutions which can target different platforms across 
vendors
– OpenMP is an open standard supported by nearly every vendor, and a 

promising solution
§ Goals

– Present examples about how developers are using OpenMP 
– Discuss lessons learned or best practices discovered
– Provide feedback on any of the current OpenMP implementations (any new 

features desired?)
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Minutes Presenter or Moderator 
Fortran Session Tim Williams
GenASiS 4 Reuben Budiardja
GESTS 4 Oscar Hernandez
Thornado/Exastar 4 Austin Harris
E3SM 4 Matt Norman
NUCCOR 4 Gustav R. Jansen
GAMESS 4 JaeHyuk Kwack
XGC 4 Brian MacKie-Mason
Fortran Session Q&A 15 Tim Williams, all presenters
C/C++ Session Oscar Hernandez
LAMMPS SNAP mini-app 4 Rahul Gayatri
MILC SU3 matrix-multiply mini-app 4 Doug Doerfler/Chris Daley
HPGMG 4 Hadia Ahmed/Chris Daley
QMCPack 4 Ye Luo/Thomas Applencourt
XSBench 4 John Tramm
Numerical Libraries 4 Piotr Luszczek
C/C++ Session Q&A 15 Oscar Hernandez, all presenters
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OPENMP RESOURCES

§ OpenMP website
– https://www.openmp.org

§ OpenMP Validation and Verification
– https://crpl.cis.udel.edu/ompvvsollve/

§ OpenMP YouTube Channel
– https://www.youtube.com/user/OpenMPARB/

§ At ECP Annual Meeting:
– OpenMP 4.5 and 5.0 Tutorial (Offload) 
– Wed Feb 5, 2020, 2:30 PM - 6:00 PM in Discovery A
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APPLICATION
General Astrophysics Simulation System (GenASiS)

– Current target: 3D position space + 1D momentum space the simulations of 

core-collapse supernovae; Towards 3D + 3D (sustained exascale)

– Previous results: studied of fluid instabilities in supernova dynamics, discovered 

exponential magnetic field amplification in progenitor star

Code characteristics:
– Modern Fortran (mostly F2008 + F2008, F2018) 

– Modular, object-oriented design, extensible

– OpenMP 4.5 for offloading (recent work)
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STORAGEFORM CLASS
A Class for data and metadata; the ‘heart’ of data storage facility in GenASiS.  

StorageForm % Value ( nCells, nVariables )
e.g.  Pressure => StorageForm % Value ( :, 1 ),

Density  => StorageForm % Value ( :, 2 ), ...
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Tells OpenMP data location on GPU 
→avoid (implicit) allocation & 

transfer

StorageForm % AllocateDevice ( )
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Offloading a Computational Kernel call F % Initialize &
([nCells, nVariables])

call F % AllocateDevice ( )
call F % UpdateDevice ( )
call AddKernel &
( F % Value ( :, 1 ),
F % Value ( :, 2 ), &
F % Value ( :, 3 ) ) 

No implicit data 
transfer, 

no explicit map()

Persistent allocation and association



LESSON LEARNED & BEST PRACTICES
Explicit management of data movement is necessary for overall performance
– use “pinned memory” → no mechanism in OpenMP 4.5, but in 5.x

• resorted to wrapping CUDA calls for now
– persistent host ⇄ GPU data association done via class StorageForm method

Avoid complicated data structure in kernels
– pass “simple” arrays as subroutine arguments

Use “associate” construct to help match what OpenMP maps
– associate ( v_1 => F_Value ( :, F % Velocity(1) ) )

Speedups about ~15X on per Summit node (6 GPU to 42 CPU cores) for 
hydrodynamics solvers
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PROBLEM ENCOUNTERED
With IBM XL, “-qoffload -qsmp=omp” flag on module with derived-type (DT) 
definition implies offloading the DT
– Unresolved linking errors if DT has type-bound procedure calling host-only 

subroutines
– IBM PMR → !$omp declare target device_type(host)
– Our solution: separate out “kernel” subroutines using F2008 submodules

• Reduce # files compiled with those flags → faster compilation overall

▪With OpenMP 4.5, no good way to have the same code / kernel for both OpenMP 
threads and offload
– Workaround: code duplications with different OpenMP pragmas
– Future: OpenMP 5 meta-directives?
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INTRODUCTION
§ Multidimensional FFT provides a case study of wide relevance

– Fluid dynamics, weather forecasting, signal processing are some applications that require 
Fourier transforms

– Scalability often ultimately limited by communication costs
§ State-of-the-art heterogeneous machines provide new opportunities

– Computations accelerated using GPUs
– Overlap operations to hide GPU compute, data transfers and network communication

§ Languages, programming models, and dependency on libraries
– Original code in CUDA Fortran
– Port to Fortran using OpenMP to target GPUs for portability
– CUDA FFT library for FFTs on GPU
– MPI library for all-to-all transpose
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BRIEF DESCRIPTION AND MOTIVATION
§ Successfully developed a batched asynchronous algorithm to solve large problem sizes 

without being limited by GPU memory
– CUDA Fortran code with asynchronous executionusing CUDA Events and Streams
– Presented results collected on Summit at SC19 :
– K. Ravikumar, D. Appelhans, and P. K. Yeung. GPU acceleration of extreme scale pseudo-spectral 

simulations of turbulence using asynchronism. In Proceedings of The International Conference for 
High Performance Computing, Networking and Storage Analysis (SC’19), Denver, CO, USA. ACM, 
New York, NY, USA, https://doi.org/10.1145/3295500.3356209 , 2019.

§ Motivation for current work
– Future systems may not support CUDA
– Use OpenMP for a more portable code

§ Target systems: 
– Summit: Two P9 CPUs and 6 NVIDIA NV100 GPUs using XLF compilers
– Frontier: AMD CPUs/GPUs with Cray Fortran and gfortran compilers
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CURRENT APPROACH

17

eg., call cufft library
• 1 slab of data per MPI task
• Vertically divided among 

multiple GPUs (3 in above 
figure)

• 4 pencils per slab : different 
operations running in parallel 
on each pencil



1D FFT EXAMPLE USING OPENMP
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• Forward & Inverse Transform
• Transformed Data scaled and 

compared with initial data using 
OpenMP Target Loop

• Expect scalar multiplication to be 
performed after FFT finishes

• Gives incorrect results!

• Task dependency enforced on host
• Task performing FFT is considered 

complete when thread finishes 
launching cuFFT kernel

• Dependency not enforced based on 
when cuFFT kernel finishes on GPU



LESSONS LEARNED AND NEXT STEP
§ Lessons learned 

– Use cudaEventRecord and cudaEventSynchronize to ensure host waits 
for cuFFT kernel to complete

– Above work around by mixing CUDA Fortran and OpenMP: but not a permanent solution

§ Next step
– Explore TASK DETACH and other OpenMP 5.x features that might help when compiler 

support is available

19
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EXASTAR
§ Component-based multi-physics AMR-based toolkit for simulating stellar explosions

(e.g., supernovae, neutron-star mergers)
– Couple physics in AMR-based Flash/Castro codes

§ Key physics modules
– Spectral neutrino transport (compiler directives and linear algebra libraries)
– Nuclear burning (compiler directives and linear algebra libraries)
– Magnetohydrodynamics (compiler directives)
– Gravity (compiler directives)
– Equation of state (compiler directives)
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THORNADO

§ High-order discontinuous Galerkin (DG) methods
§ Implicit-Explicit (IMEX) time integration

– Explicit neutrino advection operator
– Implicit neutrino collision operator

• Nonlinear solver
• Tabulated microphysics

§ Designed to be incorporated into AMR-based codes
– Focus on node-level performance

§ GPU port of original CPU code via compiler directives and linear algebra libraries

ExaStar proxy application for spectral neutrino transport
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LINEAR ALGEBRA LIBRARIES

24

COMPILER DIRECTIVES

THORNADO GPU STRATEGY



DELEPTONIZATION WAVE TEST PROBLEM
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§ Proxy for CCSN problem

§ Evolve one “block” with thornado
– Energy discretization: 32 points
– Spatial discretization: 123 points

§ ~100x speedup relative to serial CPU code



PROBLEMS ENCOUNTERED (IF ANY)
§ Compilers

– Very long compile time with IBM XL Fortran using OpenMP OL

– Poor kernel launch configuration for some kernels with OpenMP OL (XL)

§ Migration from other programming models

– Challenging to port iteration kernels due to register pressure (e.g., Newton-Raphson)

• Solved by packing “active” elements and breaking up iteration into smaller kernels

§ Interoperability/libraries

– Customized MAGMA routines for pre-allocated work arrays

– Complicated interfaces for batched linear algebra routines with Fortran

(e.g., array of pointers on device)

§ Tools

– Arm MAP useful for low-overhead, easy-to-use sampling for initial profiling
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LESSONS LEARNED AND NEXT STEP
§ Lessons learned 

– Write ”portable” CPU code (e.g., tight loop nests, libraries when possible)
– Often faster for CPU as well

§ Next step
– Benchmarking and scaling with FLASH+thornado in AMR framework
– GPU porting of additional microphysics and solvers
– Performance implications for higher-order DG
– Optimization/tuning

• Asynchronous GPU kernels

27

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User 
Facility supported under Contract DE-AC05-00OR22725.
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ENERGY EXASCALE EARTH SYSTEM MODEL 
(E3SM)
§ Coupled high-resolution climate model

– Atmospheric component is the most expensive
– Better approximated clouds with embedded Cloud Resolving Models (CRMs)

§ Cloud Resolving Model (CRM) Code is in Fortran 90
– About 10K Lines of Code, but consumes > 90% of the runtime
– No MPI communication in the CRM code
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ENERGY EXASCALE EARTH SYSTEM MODEL 
(E3SM)
§ Past Work

– First ported to GPUs with OpenACC
– Exposed parallelism by pushing loops down callstack and promoting variables
– Had to remove pointers and derived types from all kernels (PGI bugs)

§ Motivation for current work
– PGI bugs in OpenACC on Summit
– PGI unlikely to be available on Frontier
– Greater portability
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CURRENT APPROACH
§ Make the CRM code as portable as possible

– Not allowing any derived types or classes (no “%” in data statements or kernels)
– Allocate model with a custom C++ allocator that uses CUDA managed memory

• Uses cudaMallocManaged and cudaMemPrefetchAsync for performance
• Also maps data in OpenACC and OpenMP runtimes via:

– acc_map_data() in OpenACC
– omp_target_associate_ptr() in OpenMP offload

• Forces offload runtimes to ignore data transfers and leave it to the CUDA runtime instead
• Now, you no longer need data statements in either offload approach

– In this manner, OpenMP and OpenACC APIs are nearly one-to-one
• Can switch between the two with preprocessor directives

– Examples: https://github.com/mrnorman/YAKL |      https://github.com/mrnorman/gator
§ Previous approach has been demonstrated in a smaller app
§ Currently working to port all of the CRM code to OpenMP in this manner

32
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PROBLEMS ENCOUNTERED (IF ANY)
§ Compilers

– GNU OpenMP is pretty far behind in performance and coverage
– Not easy to access Cray compiler except through ECP test machines
– Cray and IBM XL have different definitions of simd and parallel do on the GPU

• Fairly easily handled with preprocessors
– Cray compiler fails in the omp_target_associate_ptr() approach

• But they are aware of it and working on it
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LESSONS LEARNED AND NEXT STEP
§ Lessons learned 

– Simplify data used in kernels as much as possible
• Shield kernels and data statements from classes via parameter passing

– For large codes with hundreds of kernels and variables, it’s best not to have to use data 
statements at all
• Achievable through data mapping and C++ allocations with CUDA Managed Memory

§ Next Steps
– Continued answer bug and performance bug reports to vendors

34
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NUCCOR ( NUCLEAR COUPLED CLUSTER OAK RIDGE)

Science
• Computing properties of atomic nuclei 

from forces between protons and 
neutrons:

– Binding energies ( mass )
– Radii
– Density distributions
– Excitation spectra
– Radioactive properties • Developed at ORNL for the last 20 years

• Fortran 2003/2008/20XX
• Based on NTCL (Nuclear Tensor 

Contraction library
• Many (>1M) dense tensor contractions
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TYPICAL TENSOR CONTRACTION – SIMPLE VERSION

• Sizes vary many orders of 
magnitude

• !" ≪ $, & ≪ '( ≪ )
• Different compilers takes 

different directives

• Performance not stable 
between compilers

• Performance not there 
compared to CUDA and 
HIP implementations
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WHAT WE REALLY WANT TO DO!

Transpose Transpose Gemm Transpose

Transpose Transpose Gemm Transpose

Transpose Transpose Gemm Transpose

Transpose Transpose Gemm Transpose

OpenMP Library
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SUMMARY

• Performance not quite there

• Fortran compilers need to catch up

• Must be able to combine OpenMP with accelerated libraries

Thank you!
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GAMESS
§ A general quantum chemistry and ab initio electronic structure code

– ab initio SCF energies (e.g. RHF and MCSCF)
– Force fields (e.g., the Effective Fragment Potential)
– Perturbative corrections to Hartree-Fock (e.g., MP2 and RI-MP2)
– Near-linear scaling fragmentation methods (e.g., Fragment Molecular 

Orbital method)
– ab initio gradients, hessians, and geometry optimizations

§ Languages, programming models, and dependency on libraries
– Mainly written in Fortran
– An optional C++ library with re-implementations of certain methods 
– BLAS (e.g., MKL, ESSL, CUBLAS)
– An MPI parallelization library (DDI library) written in C
– MPI + X

• OpenMP for CPU cores 
• CUDA for NVIDIA GPU accelerators. 

41

Fullerene (c60)

Water cluster (w60)



GAMESS RI-MP2 FORTRAN KERNEL
§ Written in Fortran; therefore it has limited possible options for GPU computing.
§ Need a performance portable model on GPUs from multiple vendors (Intel, NVIDIA, AMD)
§ FMO/RI-MP2 is one of the quantum chemistry algorithms of interest

– Algorithm of interest in GAMESS ECP problem

42
42

RI-MP2 equations:



SCALE-UP
§ Restructured the RI-MP2 kernel to increase 

concurrency on GPUs
§ Testing multiple BLAS kernels

– CUBLAS, CUBLASXT and NVBLAS
– Intel oneMKL on Aurora testbed (in 

progress)

43

Input: c60.kern WTime(s) Speedup

Serial w/ 1 core of P9 342.697 0.036 x

OpenMP threading + ESSL
w/ 42 threads on 2 P9 12.231 1 x

OpenMP offloading + NVBLAS
on 1 V100 1.734 7.05 x

OpenMP offloading + CUBLAS
on 1 V100 1.983 6.17 x

OpenMP offloading + CUBLASXT
on 1 V100 1.728 7.08 x

Similar to 
the peak ratio of 

one V100 GPU over 
two IBM P9 CPUs

(i.e., 7.22x)



§ Testing MPI + OpenMP offloading on multiple 

GPUs and multiple compute nodes on Summit

SCALE-OUT

44

The peak ratio of 

six V100 GPUs over two IBM P9

(i.e., 43.33x)



PROBLEMS ENCOUNTERED (IF ANY)
§ Compilers

– IBM XLF on OLCF Summit works fine
– Intel IFORT on ALCF JLSE works fine

§ Migration from other programming models
– Smoothly migrated in a week during ECP OpenMP Hackathon

§ Interoperability/libraries
– CUBLAS and CUBLASXT make Fortran kernel messy, but functional. 
– NVBLAS uses standard BLAS calls; it helps code keep clean. 

• However, NVBLAS and CPU math library (e.g., ESSL, MKL, and ArmPL) use the same symbol 
(e.g., DGEMM ), and it may result in unexpected errors or lower performance on 
heterogeneous architecture.

– OpenMP 5 declare variant directive may figure out this symbolic conflict

§ Tools
– NVPROF works fine
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LESSONS LEARNED AND NEXT STEP

§ Lessons learned 
– On a single NVIDIA V100 GPU, the OpenMP offloading kernels show

• more than 7x speedup over 42 threaded code on IBM P9 processors,  
• around 200 x speedup over the serial run on IBM P9 processors.

– On the same number of Summit nodes, the MPI+OpenMP offloading kernels show
• More than 40x speedup over the MPI + OpenMP threading kernels.

§ Next step
– Near term

• Actively working on Aurora testbed for Intel GPUs
• Extending OpenMP offloading implementations to other kernels of GAMESS

– Long term
• Running GAMESS on NERSC Perlmutter, ALCF Aurora and OLCF Frontier at scale

§ Anything else

46
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XGC INTRODUCTION
§Collision operator used after particles pushed
§Uses Landau interaction tensor, advection/diffusion tensors, elliptic 

integrals
– R. Hager, et. al., Journal of Computational Physics 315 (2016), 

pp. 644-660
– E.S. Yoon, et. al., Physics of Plasmas 21 (2014), 032503

§Pre-exascale physics simulating two different species (deuteron-
electron)

§Exascale goal is to simulate top ten ion impurity species of ITER

49



PROGRAMMING MODEL CHOICES
§ Cori/Theta (MIC) – OpenMP 3.0
§ Titan/Summit – OpenACC
§ Perlmutter – OpenMP 4.5+
§ Aurora – OpenMP 4.5+
§ Frontier – OpenMP 4.5+
§ Etc…

50



COMPILATION

51

§ IBM XL compilers 
(xlf2008_r)

§FC = mpifort
§FFLAGS = -llapack -lblas

-qsmp=omp -qoffload –O2   
§XGCFLAGS =                      

-D_OPENMP_OFFLOAD

• PGI compilers 
(pgfortran 19.4)

• FC = mpifort
• FFLAGS = -llapack

-lblas -mp -fast –O3
• ACC_FLAGS = -acc -

ta=tesla:cc70,ptxinfo,ma
naged                            
-Minfo=accel                  
-Mnostack_arrays
-DUSE_ASYNC



OPENACC->OPENMP OFFLOAD (MEMORY)
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Result: Appears to work based on other observations



OPENACC->OPENMP OFFLOAD (SUCCESS)
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Result: 
~4.5x 
speed-up



OPENACC->OPENMP OFFLOAD (W.I.P.)

54

//code

Result: Incorrect result. Two directives diverge with external module call.



THANK YOU!
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C/C++ SESSION
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EXAALT – ECP PROJECT
§ ECP EXAALT project seeks to extend the accuracy, length, and time scales of material 

science simulations for fission/fusion reactors using LAMMPS MD

§ Primary KPP target is MD of nuclear fusion materials that uses the SNAP interatomic 

potential in LAMMPS

– Performance directly depends on the single node performance of SNAP

§ C++, Math Libraries (math.h)

59



TESTSNAP – A PROXY APP FOR LAMMPS/SNAP
§ TestSNAP - an independent 

standalone application for the 
SNAP module in LAMMPS

§ Testbed for various 
parallelization strategies and 
optimizations 

§ Successful optimizations are 
merged into LAMMPS

60

for(num_atoms) // loop over atoms
{

build_neighborlist(); //build neighborlist for each atom
compute_ui();
compute_yi();
for(num_nbors) //loop over neighbors
{

compute_duidrj();
compute_dbidrj();

update_force(); //update force for (atom,nbor) pair
}

}



TEST-SNAP – REFACTORED

61

for(num_atoms)
{

build_neighborlist();
compute_ui();
compute_yi();
for(num_nbors)
{

compute_duidrj();
compute_dbidrj();

update_force(); 
}

}

for(num_atoms)
build_neighborlist();

for(num_atoms)
compute_ui();

for(num_atoms)
compute_yi();

for(num_atoms)
for(num_nbors)

compute_duidrj();

for(num_atoms)
for(num_nbors) 

compute_dbidrj();

for(num_atoms)
for(num_nbors)

update_force(); 



OPENMP OFFLOAD – MAP DATA TO DEVICE
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#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)



OPENMP OFFLOAD – DISTRIBUTE WORK 
ACROSS TEAMS AND THREADS 

63

void compute_ui
{
#pragma omp target teams distribute parallel for 

for(num_atoms)
{

……
}

}

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)



OPENMP OFFLOAD – COLLAPSE ATOM AND 
NEIGHBOR LOOPS 
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void compute_ui
{
#pragma omp target teams distribute parallel for 

for(num_atoms)
{

……
}

}

void compute_duidrj
{
#pragma omp target teams distribute parallel for\
collapse(2) 

for(num_nbor)
for(num_atoms)
{
……

}
}

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)



OPENMP OFFLOAD – MAP THE OUTPUT BACK 
TO HOST

65

void compute_ui
{
#pragma omp target teams distribute parallel for 

for(num_atoms)
{

……
}

}

void compute_duidrj
{
#pragma omp target teams distribute parallel for\
collapse(2) 

for(num_nbor)
for(num_atoms)
{
……

}
}

#pragma omp target exit data map(from:this->deidrj[0:deidrj.size])

#pragma omp target enter data map(to:this[0:1])

#pragma omp target enter data map(to:this->U[0:U.size], …)



PERFORMANCE AND LESSONS LEARNT
§ Optimized Kokkos implementation

– Within 90% of the equivalent optimized kokkos implementation

§ Lessons learnt

– Optimize on data movements

– Column major data access pattern for GPUs (row major : 3x slower for OpenMP~4.5 SNAP 

implementation)

– No performance differences with #pragma omp alloc vs #pragma omp map to/from if its done 

same number of times

– For multiple synchronization points between host-device #pragma alloc and #pragma update 

to is a preferable

66

Compilers
XL – summit (xl/16.1)

Clang – Cori-GPU (llvm-10.0)



THANK YOU!
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OVERVIEW
§ The SU(3) benchmark calculates a matrix-matrix multiply of complex number matrices

– Derived from the MILC Lattice QCD code

§ The benchmark performs ~4 million 3x3 matrix-matrix multiplies
– Operations on 3x3 matrices are a fundamental building block of LQCD applications

§ It is written in C++ and has no library dependencies

§ Doug Doerfler has created GPU implementations in CUDA, OpenCL, OpenMP target offload, 
OpenACC, and SYCL: https://bitbucket.org/dwdoerf/su3_bench

69

https://bitbucket.org/dwdoerf/su3_bench


OPENMP TARGET OFFLOAD APPROACH

70

#pragma omp target teams distribute
for(int i=0; i<1048576; ++i) {

#pragma omp parallel for collapse(3)
for(int j=0; j<4; ++j) {
for(int k=0; k<3; k++) {
for(int l=0; l<3; l++) {

Complx cc;
for(int m=0; m<3; m++) {
cc += d_a[i].link[j].e[k][m] * d_b[j].e[m][l];

}
d_c[i].link[j].e[k][l] = cc;

}
}

}
}

Use teams parallelism for the ~1 
million sites

Use thread parallelism for the 
matrices associated with the 4 
“links” per site



MIXED OPENMP TARGET OFFLOAD 
PERFORMANCE ON CORI-GPU AND SUMMIT

71

Analytical roofline on 
NVIDIA V100 GPUs

§ Benchmark is memory 
bandwidth bound but is 
sensitive to overheads

§ Terrible performance in 
LLVM/Clang because of 
excess GPU memory 
traffic (implicit OpenMP 
flushes)

OpenMP:
Up to 60% 
of CUDA 
perf.



MANUAL SPMD OPTIMIZATION FOR 
LLVM/CLANG

72

#pragma omp target teams num_teams(NTEAMS) thread_limit(NTHREADS)
{
#pragma omp parallel
{
int total_teams = omp_get_num_teams();
int team_id = omp_get_team_num();
int sites_per_team = (total_sites + total_teams - 1) / total_teams;
int istart = team_id * sites_per_team;
if (istart > total_sites) istart = total_sites;
int iend = istart + sites_per_team;
if (iend > total_sites) iend = total_sites;

// This is the total_sites loop manually chopped up
for (int i = istart; i < iend; ++i) {

#pragma omp for collapse(3)
for (int j=0; j<4; ++j) {

No code between teams and 
parallel OpenMP directives

Performance improves by 33x to 
401 GFLOP/s



LESSONS LEARNED AND NEXT STEP
§ All compilers successfully ran the benchmark but performance was varied
§ We needed to manually SPMDize the code to get good performance with LLVM/Clang

– This avoided O(1 million) implicit memory flushes
– Future versions of LLVM/Clang will hopefully include the TRegion enhancement [1] to 

make manual optimization unnecessary
§ We plan to profile the benchmark to identify the remaining sources of differences between 

OpenMP compilers

[1] Johannes Doerfert, Jose Manuel Monsalve Diaz, and Hal Finkel. "The TRegion Interface 
and Compiler Optimizations for OpenMP Target Regions." In International Workshop on 
OpenMP, pp. 153-167. Springer, Cham, 2019.
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HPGMG-FV OVERVIEW
§ HPGMG-FV is a finite-volume based geometric multigrid solver

– It is a standalone benchmark used to produce an alternative Top-500 list

§ The selected configuration is a Full Multigrid (FMG) which is 4th order accurate and uses the 
out-of-place GSRB smoother

§ The upstream version of HPGMG-FV is written in C99, MPI, and OpenMP
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HPGMG-FV FOR GPUS
§ There is already a CUDA version of HPGMG-FV for GPUs: 

https://bitbucket.org/nsakharnykh/hpgmg-cuda
– This version depends on managed memory (cudaMallocManaged)

§ We have developed OpenACC and OpenMP target offload versions of HPGMG-FV to 
improve the chance that this benchmark is included in the SPEChpc® 2020 benchmark suite
– 1:1 translation of CUDA kernels to OpenACC and OpenMP target offload
– Data is still allocated using cudaMallocManaged

• Programmer-controlled data movement is work in progress
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https://bitbucket.org/nsakharnykh/hpgmg-cuda


78

IBM 16.1.1 PGI 19.9 (OpenACC) LLVM/Clang 10.0 Cray 9.1.0 - LLVM
increment_block ✓ ✓ ✓ ✓
copy_block ✓ ✓ ✓ ✓
extrapolate_betas ✓ ✓ ✓ ✓
residual ✓ ✓ VE (success at –O0) VE (success at –O0)
rebuild ✓ ✓ VE (success at –O0) VE (success at –O0)
color_vector ✓ ✓ ✓ ✓
smooth ✓ ✓ VE (success at –O0) VE (success at –O0)
restriction ✓ ✓ ✓ ✓
apply_BCs_v1 ✓ ✓ ✓ ✓
apply_BCs_v2 ✓ VE ✓ ✓
apply_BCs_v4 ✓ VE ✓ ✓
interpolation_v4 ✓ CE (can workaround) VE (success at –O0) VE (success at –O0)
Interpolation_v2 ✓ CE (can workaround) VE (success at –O0) VE (success at –O0)
zero_vector ✓ ✓ ✓ ✓
scale_vector ✓ ✓ ✓ ✓
shift_vector ✓ ✓ ✓ ✓
mul_vector ✓ ✓ ✓ ✓
add_vector ✓ ✓ ✓ ✓
sum ✓ ✓ ✓ ✓
max_abs ✓ ✓ ✓ ✓

ADDING DIRECTIVES WAS SIMPLE –
BIGGEST CHALLENGE IS CORRECTNESS

20 GPU 
kernels:

CE = 
Compilation 
Error

VE = 
Verification
Error



INITIAL OPENMP OFFLOAD PERFORMANCE 
WITH IBM COMPILER IS ENCOURAGING
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§ No performance results for 

LLVM/Clang or Cray 

because of –O0 

requirement

§ We are currently working 

with LLVM/Clang 

developers to identify and 

fix the issue: 

https://bugs.llvm.org/show

_bug.cgi?id=44390

70% of CUDA perf.

https://bugs.llvm.org/show_bug.cgi?id=44390


LESSONS LEARNED
§ Easy to translate from CUDA launch configuration to OpenACC / OpenMP loops

– However, we found several compiler bugs when using strict correctness tests

§ All the tested compilers (IBM, PGI, Clang, Cray) successfully interoperate with CUDA
– CUDA allocated data can be used in OpenACC / OpenMP kernels
– CUDA kernels can be used instead of incorrect OpenACC / OpenMP kernels

§ Poorly documented compiler options made benchmark validation harder, e.g. “-Xllvm2ptx -
nvvm-compile-options=-fma=0” to turn off fused-multiply-add in IBM compiler
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QMCAPCK
n QMCPACK, is a modern high-performance open-source Quantum Monte Carlo

(QMC) simulation code for electronic structure calculations of molecular, quasi-2D 
and solid-state systems.

n The code is C/C++ and adopts MPI+X(OpenMP/CUDA)
n Monte Carlo: massive Markov chains (walkers) evolving in parallel. 1st level 

concurrency. Good for MPI and coarse level threads.
n Quantum: The computation in each walker can be heavy when solving many body 

systems (electrons). 2nd level concurrency. Good for fine level threads and SIMD.
n Math libraries: BLAS/LAPACK, HDF5, FFTW
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GPU STATUS
§ Legacy CUDA implementation efficient for small problem sizes

- Limited functionality

- Not portable to non NVIDIA GPUs.
§ Need a performance portable design to cover all current and Exascale systems

- Refactor with a more flexible code architecture (C++)

- Using portable programming model (OpenMP, Kokkos) for accelerators
§ Three sets of code for different needs

- Standalone fake kernels for testing OpenMP compilers

- MiniQMC containing OpenMP offload having QMCPACK kernels with fake input

- QMCPACK full application with OpenMP offload to feel the real-world.
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FAKE KERNELS VALIDATING COMPILERS
§ OpenMP V&V improves a lot but still 

has blind spots
§ Fake GEMV kernels to validate 

OpenMP usage in QMCPACK
§ Correctly running on Nvidia, AMD, 

Intel GPUs recently

§ Cover many compilers

§ Still need to try PGI on NVIDIA 
cards and GCC on AMD cards
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https://github.com/ye-luo/openmp-
target/wiki/GEMV-tests



MINIQMC IS A CHALLENGE
§ Functionality bugs

l Basic math functions
l Declare persistent data on device
l Static linking fat binaries

n Needed for performance
n Asynchronous tasking

n Multi GPU stream/queue support
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XL is the only survival
Other compilers need further 
improvements



QMCPACK RUNS
§ Runs on Summit with XL compiler

§ Runs on AMD Radeon VII card 

with AOMP compiler

§ QMCPACK developers will keep 

improve the adoption of OpenMP

§ Compiler developers can improve 

the quality of compiler frontend, 

openmp runtime library to help 

boosting performance.
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Let us make OpenMP shine 

on all exascale systems
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Background
§ Mini-app representing key kernel 

of Monte Carlo particle transport 
simulation

§ Features stochastic access 
pattern of large data table 
structures
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Neutron

Atom

Code Details
§ C

§ No library dependencies

§ Versions available: OpenMP (threading), OpenMP (offloading), OpenCL, CUDA, SYCL
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• XSBench is a mini-app representing a key kernel 
from the full application OpenMC

• Experience with performance and limitations for 
different programming models will inform model 
selection decision for OpenMC



2.4

3.2

2.1
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CUDA CUDA
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OpenCL hipSYCL OpenMP
Offload

(Xeon host,
clang-ykt)

OpenMP
Offload

(Power9 host,
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M

XSBench FOM Performance on V100
(Higher is Better)

RESULTS
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LESSONS LEARNED AND NEXT STEPS
§ Lessons learned 

– OpenMP offloading relatively easy to implement
– Available compilers worked well – no bugs.
– IBM XL compiler generated fast code (better than naive CUDA implementation!)
– However, clang-ykt was 2.5x slower than IBM XL

§ Next steps
– For full application, OpenMC, we are planning to use OpenMP offloading
– Reasons:

• Development team already familiar with OpenMP threading model, pragma verbiage
• Performance was very good
• Appears it will be portable to a variety of exascale systems
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PARALLEL NUMERICAL LINEAR ALGEBRA
§ Numerical linear algebra: scope

– Linear systems: Ax=b
– Least squares: min||Ax-b||
– Eigenvalue problems: Ax=!x
– Generalized eigenvalue problems: Ax=!Bx
– Singular value problem: Av="u
– Decompositions: Cholesky, LU, LDLT, QR, Schur, UΣVT

– Sparse, batched, DNN tensors
§ Languages, programming models, and dependency on libraries

– C, C++, Fortran bindings , CUDA (Summit), HIP (Frontier), OpenCL (Aurora)
– OpenMP, MPI
– Dependency: BLAS and LAPACK

• CPU: Accelerate, ARM Perf. Lib., ESSL, libSci, MKL, OpenBLAS
• GPU: cuBLAS, hipBLAS, rocBLAS
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MAGMA, PLASMA, SLATE: CPU & GPU WORK
§ OpenMP features on CPU

– Basic work sharing loops
– Tasks and task loops
– Data clauses: in, out, inout
– Named critical regions

§ Previous or current GPU work
– MAGMA: CUDA, OpenCL (clMAGMA)
– PLASMA: Offload targets: MAGMA backend (magmaBLAS) or OpenMP offload
– SLATE: targets are CPU, CPU-nested, GPU, GPU-batched

§ Motivation for current work
– Summit: OpenMP + cuBLAS
– Aurora: OpenCL + MKL + L0
– Frontier: hipMAGMA + rocBLAS
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PROBLEMS ENCOUNTERED
§ Compilers

– Older XL: unsupported named critical region across compilation units
– Older GCC: no support for data-dependent tasks

• Still widely available and installed by default

§ Migration from other programming models
– Abandoned in-house dataflow tasking runtime called QUARK

§ Interoperability/libraries
– The middle ground: must support both threading in lower-level BLAS/LAPACK and in 

upper-level applications

§ Tools
– Looking into using the OMPT layer for auto-generation of tracing layer

§ Reproducibility support
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LESSONS LEARNED AND NEXT STEPS
§ Lessons learned 

– Using conservative subset of modern OpenMP helps us with portability

§ Next steps with OpenMP 5
– Memory allocators
– Native kernels across vendor hardware and math libraries

§ Portability testing across compilers
– Apple LLVM
– GCC 6+
– IBM XL C/C++
– Intel + MKL (iomp and gomp)
– PGI
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