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3. Gather forces 
(mesh → particles)

4. Particle push 
(update)
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FMM, or tree methods
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HACCmk kernel

When long-range fields
exist, e.g. for plasma PIC

O(N) Quantum MD

3. Build Hamiltonian (H) and 
overlap (S) matrices

4. Invert S and 
orthogonalize H

5. SCF loop iteration

6. Compute forces on atoms

1. Halo exchange of ghost cells

7. Particle update

a) Build density matrix

CoSP2 proxy app

b) Calculate partial charges 
via Coulomb sum

c) Update H and, if 
necessary, orthogonalize

2. Construct neighbor lists

Four key sub-motifs of particle-based simulation codes

Challenges of O(N) Quantum Molecular Dynamics
• Quantum-based models capture the making and breaking of covalent bonds, 

charge transfer between species of differing electro-negativities, and long-range 
electrostatic interactions

• Electronic structure methods typically require manipulations of a Hamiltonian or 
density matrix 
– For non-metallic systems, these are sparse à can obtain O(N) scaling

https://github.com/lanl/qmd-progress
https://github.com/lanl/bml

Lead: Christian Negre (LANL), 
Co-Lead: Jean-Luc Fattebert (ORNL)

PROGRESS/BML libraries for O(N) Quantum Molecular Dynamics
Lead: Stuart Slattery (ORNL)

Cabana: A Co-Designed HPC Library for Particle Applications

ECP particle application space (CoPA Tier 1 partners) Anatomy of a Timestep

Applications using PROGRESS/BML
• PROGRESS and BML libraries provide 

performance portability
• LATTE (Los Alamos Transferable Tight-binding for 

Energetics)
– Developed and utilized within the EXAALT AD 

project
– Fast O(N3) and efficient, parallel O(N) density 

matrix builds
– Extended Lagrangian Born-Oppenheimer MD 

gives long-time energy conservation without 
expensive SCF cycles

– Graph-based linear scaling electronic 
structure theory

• DFTB+ (Density Functional Tight Binding (and 
more)) – U. Bremen
– Approximate density functional theory based

quantum simulation tool (~1000 citations)
– Full integration with PROGRESS/BML after 

LANL visit by lead author (B. Aradi)
– https://github.com/cnegre/dftbplus; manuscript 

in preparation.
• MGmol – LLNL (+ORNL)

– Real-space finite difference, pseudopotential 
DFT code

– 2016 Gordon Bell finalist
– O(N) scheme relies on a matrix divide-and-

conquer approach to determine orbital 
occupation/density matrix

Cabana Data Structures

Particles are tuples of 
multidimensional data:

struct Particle
{

float pos_x;
float pos_y;
float pos_z;
double vel_x;
double vel_y;
double vel_z;
int matid;

};

Let’s rethink this in terms of SIMD 
units (e.g. a CUDA warp or CPU 
vector instruction)

struct SimdParticle
{

float pos_x[VECLEN];
float pos_y[VECLEN];
float pos_z[VECLEN];
double vel_x[VECLEN];
double vel_y[VECLEN];
double vel_z[VECLEN];
int matid[VECLEN];

};

An array of SimdParticle objects can be configured to a struct-of-arrays when VECLEN = (# of 
particles), or to an array-of-structs when VECLEN = 1

• VECLEN should be the size of a CUDA warp when using an NVIDIA GPU
• VECLEN should be a multiple of the vector width on an Intel CPU
• Allocate a block of these and you have an AoSoA
• Cabana data structure syntax is similar to Kokkos but instead of a View we build a new container of a specified 

number of particles in AoSoA format in a specified memory space:
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using DataTypes = Cabana::MemberTypes<float[3],double[3],int>;
enum MyTypeNames { Position = 0, Velocity = 1; Matid = 2 };
Cabana::AoSoA<DataTypes,Kokkos::HostSpace,8> host_aosoa( num_particle );
Cabana::AoSoA<DataTypes,Kokkos::CudaUVMSpace,32> device_aosoa( num_particle );

https://github.com/ECP-copa/Cabana

What is Cabana?
• Cabana is a software library for developing exascale applications that use 

particle algorithms, including particle-grid (Cajita)
• The library contains general particle data structures and algorithms 

implemented with those data structures
• Cabana is designed for modern DOE HPC architectures and builds directly 

on Kokkos
• Cabana open source distributed on GitHub with a BSD 3-clause license

How does Cabana impact ECP 
applications?
• Serves as a rapid development tool for algorithm 

research
• Acts as an intermediary to hardware vendors via 

isolated algorithm implementations
• Best practices can be translated to ECP applications
• Integration with ECP mini-applications
• Integration with full ECP applications

How is Cabana designed and developed?
• Co-Design motifs distilled into a shared set of 

concrete algorithms across partner applications
• A requirements document was produced in FY18 

Q1 to build library specifications
• Implementations are designed in partnership with 

and reviewed by application stakeholders
• Performance benchmarks and mini-applications 

give continuous feedback

CoPA Cabana Ecosystem

Cabana
Performance portable particle motifs

Multi-node performance portable 
particle comm

Flexible particle data layout

CabanaMD
Molecular dynamics 

proxy app

CabanaPIC
Particle-in-cell 

proxy app

LJ NNP

Kokkos
On-node performance portability: execution and memory spaces

CUDA Open
MP threads HPX HIP

LAMMPS, HACC, 
XGC, … Applications

Cajita
Performance portable 

particle-grid motifs, multi-
node portable grid comm, 

long-range solvers

SYCL

MPI

LAMMPS/SNAP GPU Performance Over Time

Significant increase of roughly 5x in performance over the 
baseline implementation of the SNAP benchmark running 
on NVIDIA V100 GPUs (Aidan Thompson (EXAALT), 
Stan Moore (CoPA) and Rahulkumar Gayatri (NESAP))

The improved Cabana version performs better than the 
original GPU version XGC to full-size Summit for a 
production case tokamak plasma and geometry (Aaron 
Scheinberg (WDMapp/CoPA) and Stuart Slattery (CoPA))
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50M electrons/GPU
2.4T  ions and electrons on 90% 

Summit

2.4T
Original version

Improved Cabana version

- PROGRESS: High-level solvers
- BML: Low-level matrix formats and 
APIs are the same for all matrix 
types (dense, sparse) and 
architectures, but underlying 
implementations can be different
- Dense matrix routines wrap 
BLAS/LAPACK calls
- Sparse matrix routines are hand-
written
- CPU only or CPU-GPU
- New: CSR, ELLBLOCK formats.   
Acceleration with MAGMA.

- One codebase
- Flexibility in configuring and building
- Ported and tested for multiple 
compilers: GNU, IBM, Intel, and more
- Leverage existing BLAS linear 
algebra libraries
- GPU acceleration in many forms
- MAGMA for dense matrix format.
- OpenMP offload for hand-written 

code
- CUDA/CUBLAS/CUSPARSE as 

needed

Library approach: Performance portability:

MAIN GOAL: Construct a flexible 
library ecosystem for Quantum 
Chemistry Applications adapted to 
pre-exascale and exascale
architectures.

• A basic matrix library (BML) offers abstractions for matrix operations independent of the underlying data structures 
(dense or sparse) and algorithms arising in quantum chemistry codes in C and Fortran

• A high-level PROGRESS solver library using BML provides methods (algorithms) for integration into existing codes 
(LATTE, DFTB+, etc.) or building new codes

Software Architecture

PROGRESS/BML enables LATTE
Scaling on SUMMIT for metallic systems

Performance 
on CPU+GPU 
and CPU is 
similar for 
small matrices. 
As the matrix 
size increases, 
the CPU+GPU 
is the clear 
winner with 
good speedup! 
(Christian 
Negre, LANL) 

Matrices of 
small sizes (< 
3000) do more 
compute on the 
CPU for 
diagonalization 
in MAGMA.
(J.-L. Fattebert,  
ORNL)

Sizes relevant 
to EXAALT

OLCF GPU 
Hackathon

CabanPIC Proxy App

lower is better

higher is better

https://github.com/lanl/qmd-progress
https://github.com/cnegre/dftbplus
https://github.com/ECP-copa/Cabana

