
CoPA: Co-Design center for Particle Applications
PI: Susan Mniszewski (Los Alamos National Laboratory)

Lab Leads: Jim Belak, Deputy PI (LLNL); Salman Habib (ANL); Stuart Slattery (ORNL); C-S Chang (PPPL); Steve Plimpton (SNL)

(2. Construct neighbor lists)

3. Compute forces on
particles due to short-

range neighbors

4. Integrate equations of
motion (particle update)

May not be done every timestep, or never if
using cell lists for simple nonbonded interactions

Molecular Dynamics (MD) Particle-in-Cell (PIC)MD (w/ long-range)

1. Halo exchange of
ghost cells

Communication

Memory/flop kernel

5. Resorting of particles
into cell lists

CoMD, ExaMiniMD,
CabanaMD Proxy Apps

1. Particle deposition
(interpolation from
particles → mesh)

2. (Poisson) field
solve on mesh

3. Gather forces
(mesh → particles)

4. Particle push
(update)

(5. Remapping: generate
new set of particles)

May be done occasionally/never

(2. Construct neighbor lists)

3. Compute forces on particles
due to short-range neighbors

5. Integrate equations of
motion (particle update)

1. Halo exchange of
ghost cells

4. Compute (approximate) long-
range forces, e.g. via Ewald, P3M,

FMM, or tree methods

6. Resorting of
particles into cell lists

6. Resorting of particles
into cell lists

HACCmk kernel

When long-range fields
exist, e.g. for plasma PIC

O(N) Quantum MD

3. Build Hamiltonian (H) and
overlap (S) matrices

4. Invert S and
orthogonalize H

5. SCF loop iteration

6. Compute forces on atoms

1. Halo exchange of ghost cells

7. Particle update

a) Build density matrix

CoSP2 proxy app

b) Calculate partial charges
via Coulomb sum

c) Update H and, if
necessary, orthogonalize

2. Construct neighbor lists

Four key sub-motifs of particle-based simulation codes

Challenges of O(N) Quantum Molecular Dynamics
• Quantum-based models capture the making and breaking of covalent bonds,

charge transfer between species of differing electro-negativities, and long-range
electrostatic interactions

• Electronic structure methods typically require manipulations of a Hamiltonian or
density matrix
– For non-metallic systems, these are sparse à can obtain O(N) scaling

https://github.com/lanl/qmd-progress
https://github.com/lanl/bml

Lead: Christian Negre (LANL),
Co-Lead: Jean-Luc Fattebert (ORNL)

PROGRESS/BML libraries for O(N) Quantum Molecular Dynamics
Lead: Stuart Slattery (ORNL)

Cabana: A Co-Designed HPC Library for Particle Applications

ECP particle application space (CoPA Tier 1 partners) Anatomy of a Timestep

Applications using PROGRESS/BML
• PROGRESS and BML libraries provide

performance portability
• LATTE (Los Alamos Transferable Tight-binding for

Energetics)
– Developed and utilized within the EXAALT AD

project
– Fast O(N3) and efficient, parallel O(N) density

matrix builds
– Extended Lagrangian Born-Oppenheimer MD

gives long-time energy conservation without
expensive SCF cycles

– Graph-based linear scaling electronic
structure theory

• DFTB+ (Density Functional Tight Binding (and
more)) – U. Bremen
– Approximate density functional theory based

quantum simulation tool (~1000 citations)
– Full integration with PROGRESS/BML after

LANL visit by lead author (B. Aradi)
– https://github.com/cnegre/dftbplus; manuscript

in preparation.
• MGmol – LLNL (+ORNL)

– Real-space finite difference, pseudopotential
DFT code

– 2016 Gordon Bell finalist
– O(N) scheme relies on a matrix divide-and-

conquer approach to determine orbital
occupation/density matrix

Cabana Data Structures

Particles are tuples of
multidimensional data:

struct Particle
{

float pos_x;
float pos_y;
float pos_z;
double vel_x;
double vel_y;
double vel_z;
int matid;

};

Let’s rethink this in terms of SIMD
units (e.g. a CUDA warp or CPU
vector instruction)

struct SimdParticle
{

float pos_x[VECLEN];
float pos_y[VECLEN];
float pos_z[VECLEN];
double vel_x[VECLEN];
double vel_y[VECLEN];
double vel_z[VECLEN];
int matid[VECLEN];

};

An array of SimdParticle objects can be configured to a struct-of-arrays when VECLEN = (# of
particles), or to an array-of-structs when VECLEN = 1

• VECLEN should be the size of a CUDA warp when using an NVIDIA GPU
• VECLEN should be a multiple of the vector width on an Intel CPU
• Allocate a block of these and you have an AoSoA
• Cabana data structure syntax is similar to Kokkos but instead of a View we build a new container of a specified

number of particles in AoSoA format in a specified memory space:

Developers:
Adedoyin Adetokunbo (LANL)
Jean-Luc Fattebert (ORNL)
Jamal Mohd-Yusof (LANL)
Christian Negre (LANL)
Daniel Osei-Kuffuor (LLNL)

Developers:
Bob Bird (LANL)
Guangye Chen (LANL)
Damien Lebrun-Grandie (ORNL)
Christoph Junghans (LANL)
Aaron Scheinberg (PPPL)
Stan Moore (SNL)
Sam Reeve (LLNL)
Shane Fogerty (LANL)

using DataTypes = Cabana::MemberTypes<float[3],double[3],int>;
enum MyTypeNames { Position = 0, Velocity = 1; Matid = 2 };
Cabana::AoSoA<DataTypes,Kokkos::HostSpace,8> host_aosoa(num_particle);
Cabana::AoSoA<DataTypes,Kokkos::CudaUVMSpace,32> device_aosoa(num_particle);

https://github.com/ECP-copa/Cabana

What is Cabana?
• Cabana is a software library for developing exascale applications that use

particle algorithms, including particle-grid (Cajita)
• The library contains general particle data structures and algorithms

implemented with those data structures
• Cabana is designed for modern DOE HPC architectures and builds directly

on Kokkos
• Cabana open source distributed on GitHub with a BSD 3-clause license

How does Cabana impact ECP
applications?
• Serves as a rapid development tool for algorithm

research
• Acts as an intermediary to hardware vendors via

isolated algorithm implementations
• Best practices can be translated to ECP applications
• Integration with ECP mini-applications
• Integration with full ECP applications

How is Cabana designed and developed?
• Co-Design motifs distilled into a shared set of

concrete algorithms across partner applications
• A requirements document was produced in FY18

Q1 to build library specifications
• Implementations are designed in partnership with

and reviewed by application stakeholders
• Performance benchmarks and mini-applications

give continuous feedback

CoPA Cabana Ecosystem

Cabana
Performance portable particle motifs

Multi-node performance portable
particle comm

Flexible particle data layout

CabanaMD
Molecular dynamics

proxy app

CabanaPIC
Particle-in-cell

proxy app

LJ NNP

Kokkos
On-node performance portability: execution and memory spaces

CUDA Open
MP threads HPX HIP

LAMMPS, HACC,
XGC, … Applications

Cajita
Performance portable

particle-grid motifs, multi-
node portable grid comm,

long-range solvers

SYCL

MPI

LAMMPS/SNAP GPU Performance Over Time

Significant increase of roughly 5x in performance over the
baseline implementation of the SNAP benchmark running
on NVIDIA V100 GPUs (Aidan Thompson (EXAALT),
Stan Moore (CoPA) and Rahulkumar Gayatri (NESAP))

The improved Cabana version performs better than the
original GPU version XGC to full-size Summit for a
production case tokamak plasma and geometry (Aaron
Scheinberg (WDMapp/CoPA) and Stuart Slattery (CoPA))

Lo
w

er
 is

 b
et

te
r

50M electrons/GPU
2.4T ions and electrons on 90%

Summit

2.4T
Original version

Improved Cabana version

- PROGRESS: High-level solvers
- BML: Low-level matrix formats and
APIs are the same for all matrix
types (dense, sparse) and
architectures, but underlying
implementations can be different
- Dense matrix routines wrap
BLAS/LAPACK calls
- Sparse matrix routines are hand-
written
- CPU only or CPU-GPU
- New: CSR, ELLBLOCK formats.
Acceleration with MAGMA.

- One codebase
- Flexibility in configuring and building
- Ported and tested for multiple
compilers: GNU, IBM, Intel, and more
- Leverage existing BLAS linear
algebra libraries
- GPU acceleration in many forms
- MAGMA for dense matrix format.
- OpenMP offload for hand-written

code
- CUDA/CUBLAS/CUSPARSE as

needed

Library approach: Performance portability:

MAIN GOAL: Construct a flexible
library ecosystem for Quantum
Chemistry Applications adapted to
pre-exascale and exascale
architectures.

• A basic matrix library (BML) offers abstractions for matrix operations independent of the underlying data structures
(dense or sparse) and algorithms arising in quantum chemistry codes in C and Fortran

• A high-level PROGRESS solver library using BML provides methods (algorithms) for integration into existing codes
(LATTE, DFTB+, etc.) or building new codes

Software Architecture

PROGRESS/BML enables LATTE
Scaling on SUMMIT for metallic systems

Performance
on CPU+GPU
and CPU is
similar for
small matrices.
As the matrix
size increases,
the CPU+GPU
is the clear
winner with
good speedup!
(Christian
Negre, LANL)

Matrices of
small sizes (<
3000) do more
compute on the
CPU for
diagonalization
in MAGMA.
(J.-L. Fattebert,
ORNL)

Sizes relevant
to EXAALT

OLCF GPU
Hackathon

CabanPIC Proxy App

lower is better

higher is better

https://github.com/lanl/qmd-progress
https://github.com/cnegre/dftbplus
https://github.com/ECP-copa/Cabana

